DSIS-DPR:Structured Instance Segmentation and Diffusion Prior Refinement for Dental Anatomy Learning

计算机科学 分割 人工智能 图像分割 计算机视觉 计算机图形学(图像)
作者
Xianyun Wang,Linhong Wang,Zhenchen Yang,Jiacong Zhou,Yuchen Zheng,Feng Chen,Richang Hong,Jun Yu,Fan Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9464-9476 被引量:1
标识
DOI:10.1109/tmm.2024.3394777
摘要

Instance segmentation in medical imaging plays a crucial role in clinical diagnostic tasks, and have shown promising performance in practical applications. In this paper, we discuss a more fine-grained instance segmentation task: dental structured instance segmentation based on panoramic radiographs. However, direct segmentation of tooth structures encounters inherent challenges. Traditional instance segmentation networks often fall short in capturing intricate internal features, and exacerbated by the frequent blurring found in medical imaging, which can result in the deficiency of anatomical details. To deal with these problems, we propose a novel framework called DSISDPR, which combines a dental structured instance segmentation (DSIS) network with an enhanced diffusion prior refinement (DPR) method. Specifically, our innovatively designed structureaware network leverages fine-grained feature fusion, acquiring a richer representation of internal anatomical structures. With the integration of adversarial learning, the model is primed to deliver holistic and subtle predictions of tooth structures. Furthermore, taking inspiration from dentists' inherent ability to utilize prior knowledge, such as understanding dental structures to label invisible anatomical structures, we propose a diffusion inpainting to refine the results of DSIS without additional annotations. Equipped with built-in structure learning, DPR is capable of modifying anomalies within each predicted segmentation, resulting in a more robust and complete structured segmentation result. Meanwhile, we ensure rigorous oversight over the reconstruction of areas affected by abnormalities, ensuring that any introduced adjustments minimally disrupt the wellpredicted structured segmentation results. Extensive experiments have demonstrated that our DSIS-DPR outperforms all existing classical instance segmentation networks. The collected dataset is available: https://github.com/Zzz512/TSD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助jackscu采纳,获得10
刚刚
务实书文发布了新的文献求助10
3秒前
phy发布了新的文献求助10
3秒前
自然的砖家完成签到,获得积分10
4秒前
XIMIXIMI发布了新的文献求助10
4秒前
6秒前
7秒前
葱姜蒜辣椒香菜我全要完成签到,获得积分10
7秒前
所所应助phy采纳,获得10
7秒前
yigeluobo完成签到 ,获得积分10
9秒前
共享精神应助田田田田采纳,获得10
9秒前
10秒前
今后应助短歌终采纳,获得20
11秒前
12秒前
说好不吃肥肉的完成签到,获得积分10
13秒前
Cindy完成签到,获得积分10
14秒前
共享精神应助酷酷的店员采纳,获得10
15秒前
XIMIXIMI完成签到,获得积分10
15秒前
赘婿应助阿布采纳,获得10
16秒前
16秒前
17秒前
19秒前
yigeluobo发布了新的文献求助30
19秒前
帆帆牛完成签到,获得积分10
19秒前
呜呜呜啦发布了新的文献求助10
21秒前
21秒前
philo发布了新的文献求助50
22秒前
23秒前
24秒前
24秒前
24秒前
可爱的函函应助xh采纳,获得10
24秒前
田田田田发布了新的文献求助10
25秒前
刘xiansheng完成签到,获得积分20
25秒前
小s发布了新的文献求助10
26秒前
27秒前
28秒前
优雅静珊发布了新的文献求助10
28秒前
FashionBoy应助可耐的白山采纳,获得10
29秒前
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109446
求助须知:如何正确求助?哪些是违规求助? 3647741
关于积分的说明 11554720
捐赠科研通 3353627
什么是DOI,文献DOI怎么找? 1842410
邀请新用户注册赠送积分活动 908654
科研通“疑难数据库(出版商)”最低求助积分说明 825696