DSIS-DPR:Structured Instance Segmentation and Diffusion Prior Refinement for Dental Anatomy Learning

计算机科学 分割 人工智能 图像分割 计算机视觉 计算机图形学(图像)
作者
Xianyun Wang,Linhong Wang,Zhenchen Yang,Jiacong Zhou,Yuchen Zheng,Feng Chen,Richang Hong,Jun Yu,Fan Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9464-9476 被引量:1
标识
DOI:10.1109/tmm.2024.3394777
摘要

Instance segmentation in medical imaging plays a crucial role in clinical diagnostic tasks, and have shown promising performance in practical applications. In this paper, we discuss a more fine-grained instance segmentation task: dental structured instance segmentation based on panoramic radiographs. However, direct segmentation of tooth structures encounters inherent challenges. Traditional instance segmentation networks often fall short in capturing intricate internal features, and exacerbated by the frequent blurring found in medical imaging, which can result in the deficiency of anatomical details. To deal with these problems, we propose a novel framework called DSISDPR, which combines a dental structured instance segmentation (DSIS) network with an enhanced diffusion prior refinement (DPR) method. Specifically, our innovatively designed structureaware network leverages fine-grained feature fusion, acquiring a richer representation of internal anatomical structures. With the integration of adversarial learning, the model is primed to deliver holistic and subtle predictions of tooth structures. Furthermore, taking inspiration from dentists' inherent ability to utilize prior knowledge, such as understanding dental structures to label invisible anatomical structures, we propose a diffusion inpainting to refine the results of DSIS without additional annotations. Equipped with built-in structure learning, DPR is capable of modifying anomalies within each predicted segmentation, resulting in a more robust and complete structured segmentation result. Meanwhile, we ensure rigorous oversight over the reconstruction of areas affected by abnormalities, ensuring that any introduced adjustments minimally disrupt the wellpredicted structured segmentation results. Extensive experiments have demonstrated that our DSIS-DPR outperforms all existing classical instance segmentation networks. The collected dataset is available: https://github.com/Zzz512/TSD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
古德曼发布了新的文献求助10
刚刚
火火完成签到,获得积分10
刚刚
善学以致用应助鲤鱼采纳,获得10
刚刚
ZXDDDD发布了新的文献求助10
1秒前
1秒前
1秒前
九月完成签到,获得积分10
1秒前
Owen应助王jj采纳,获得10
2秒前
汉堡包应助Dke采纳,获得10
2秒前
2秒前
Ww应助wgy采纳,获得10
3秒前
第八号当铺完成签到,获得积分10
3秒前
3秒前
ven完成签到,获得积分10
3秒前
Capper发布了新的文献求助10
3秒前
3秒前
4秒前
小T儿完成签到,获得积分10
4秒前
4秒前
搜集达人应助VDC采纳,获得30
4秒前
Owen应助昏睡的咖啡采纳,获得10
5秒前
俭朴的皮卡丘完成签到 ,获得积分10
5秒前
葵花发布了新的文献求助10
5秒前
提拉米苏应助小橘采纳,获得10
6秒前
兔子吃胡萝卜完成签到,获得积分10
6秒前
科目三应助昆明官渡酒店采纳,获得10
6秒前
Crsay发布了新的文献求助10
7秒前
火火发布了新的文献求助10
7秒前
7秒前
7秒前
留胡子的依萱完成签到,获得积分10
7秒前
古德曼完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
孙博发布了新的文献求助10
8秒前
8秒前
zwg完成签到,获得积分10
8秒前
ganjqly完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316787
求助须知:如何正确求助?哪些是违规求助? 4459242
关于积分的说明 13874397
捐赠科研通 4349242
什么是DOI,文献DOI怎么找? 2388650
邀请新用户注册赠送积分活动 1382839
关于科研通互助平台的介绍 1352214