Accurate in situ rock density measurement with cosmic ray muon radiography

宇宙射线 μ介子 物理 原位 核物理学 射线照相术 地质学 气象学
作者
J.B. Pang,Zhiwei Li,Shuning Dong,Jingtai Li,Xin Mao,H. L. Ding,Hao Wang,Xiaoming Guo,Lei Liu,Jianming Zhang,Xinzhou Feng,Bin Liu,Xiaoping Ouyang,Ran Han
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:135 (20)
标识
DOI:10.1063/5.0207047
摘要

Muon radiography, which relies on measuring the absorption and attenuation of muons as they pass through matters, offers a new imaging technique capable of revealing the internal structure of large objects. Recent technological advancement allows for the application or testing of muon radiography in various fields, including mining, civil engineering, security check, etc. This study investigates the factors that influence muon radiography, which is used in density inversion, through simulations and experiments. The materials considered for density inversion include water, standard rock, and iron. Our simulation studies show that the number of events detected and selected has an impact on the reconstruction results, and several factors, such as multiple Coulomb scattering processes, recording time, and spatial resolution, which influence the number of muons, must be taken into account when measuring the rock density. We design and conduct a laboratory scale experiment based on the simulation results. We filter the 220 h of recording signals through time coincidence and straight-line fitting to obtain the selected events. Our results reveal that the statistical error of muons survival ratio in recording time significantly impacts the inversion result and decreases the error can improve accuracy greatly. In the experiment, the deviation between the inversion mean value and the expected value can be reduced to 2.4%–2.9% for iron, 7% for water, and 1.5% for standard rock. This density inversion approach provides insight into future density detection of underground structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满若灵完成签到,获得积分10
1秒前
1秒前
鳗鱼曼文发布了新的文献求助10
2秒前
林狗发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助luxkex采纳,获得10
3秒前
aa发布了新的文献求助10
3秒前
吖吖关注了科研通微信公众号
3秒前
柠檬百香果完成签到,获得积分10
4秒前
陈陈完成签到,获得积分10
5秒前
顺利书翠发布了新的文献求助10
7秒前
8秒前
优秀剑愁完成签到 ,获得积分10
8秒前
欢呼的凌兰完成签到,获得积分10
8秒前
Yangqx007完成签到,获得积分10
11秒前
Dasein完成签到 ,获得积分10
12秒前
现代汽车发布了新的文献求助10
13秒前
鳗鱼曼文完成签到 ,获得积分10
13秒前
大模型应助wangzai采纳,获得10
13秒前
可爱的函函应助顺利书翠采纳,获得10
15秒前
Jerry完成签到,获得积分10
16秒前
Ewan完成签到,获得积分10
16秒前
科研通AI2S应助山谷与花采纳,获得10
16秒前
科研通AI5应助冰阔罗采纳,获得10
16秒前
英姑应助轻松的书南采纳,获得10
17秒前
SciGPT应助现代汽车采纳,获得10
20秒前
hhc完成签到,获得积分10
21秒前
小白菜完成签到 ,获得积分10
23秒前
26秒前
共享精神应助熊宜浓采纳,获得10
27秒前
吖吖完成签到,获得积分20
28秒前
明理的问兰完成签到 ,获得积分10
28秒前
29秒前
彭于晏应助明亮无颜采纳,获得20
30秒前
30秒前
30秒前
山谷与花发布了新的文献求助10
32秒前
海派Hi完成签到 ,获得积分10
32秒前
33秒前
酷波er应助咕噜咕噜采纳,获得10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380808
关于积分的说明 10515927
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707492
邀请新用户注册赠送积分活动 821774
科研通“疑难数据库(出版商)”最低求助积分说明 772947