Spatial distribution patterns and drivers of above- and below- biomass in Chinese terrestrial ecosystems

空间分布 生物量(生态学) 陆地生态系统 环境科学 生态系统 分布(数学) 生态学 地理 遥感 生物 数学 数学分析
作者
Yusen Chen,Shihang Zhang,Yongdong Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:944: 173922-173922
标识
DOI:10.1016/j.scitotenv.2024.173922
摘要

Unraveling the dynamics of the global carbon cycle and assessing the sustainability of terrestrial ecosystems are critically dependent on a comprehensive understanding of vegetation biomass. This exploration delves into the pivotal role of biomass within vegetation communities, emphasizing its impact on ecosystem health, productivity, and community structure development. These insights are invaluable for advancing ecological science and conservation efforts. The synthesis of aboveground (AGB) and belowground (BGB) biomass data from 4485 and 3442 locations across China, respectively, collates a wide range of published sources. Integrating this extensive dataset with environmental parameters and applying advanced machine learning techniques facilitated an in-depth analysis of AGB and BGB spatial patterns within China. Techniques such as variance decomposition analysis and piecewise structural equation modeling were employed to dissect the factors contributing to the spatial variability of vegetation biomass. Significant spatial heterogeneity in biomass distribution was uncovered, with vegetation biomass in the northwest markedly lower than in the southern and northeastern regions. It was observed that AGB consistently surpassed BGB. Climatic conditions, soil characteristics, and soil nutrients were found to significantly explain 53 % and 48 % of the total variance in AGB and BGB, respectively. Specifically, solar radiation and soil total nitrogen were identified as critical factors influencing variations in AGB and BGB. The findings offer profound contributions to the understanding of the global carbon balance and the evaluation of terrestrial ecosystems sustainability. Moreover, they provide essential insights into the ecosystems' response mechanisms to global changes, serving as a fundamental reference for future studies on terrestrial ecosystem carbon cycling and carbon sequestration potentials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
英俊的铭应助鹬鸱采纳,获得10
3秒前
Zhuxiaole发布了新的文献求助10
4秒前
在吃饭的时候吃饭完成签到,获得积分10
4秒前
领导范儿应助lu采纳,获得10
5秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
Calvin-funsom完成签到,获得积分10
5秒前
Akim应助Alice采纳,获得10
6秒前
诗和远方发布了新的文献求助10
7秒前
7秒前
顾矜应助吕文晴采纳,获得10
7秒前
虚心夜山发布了新的文献求助10
7秒前
kai完成签到,获得积分20
7秒前
7秒前
李健应助绝望了采纳,获得10
8秒前
9秒前
9秒前
lisier发布了新的文献求助10
9秒前
chunjun完成签到,获得积分10
9秒前
习红瑞发布了新的文献求助10
10秒前
wanci应助uf欧采纳,获得10
10秒前
英俊的铭应助久久采纳,获得10
10秒前
10秒前
陈宏宇完成签到,获得积分20
11秒前
BYN发布了新的文献求助10
11秒前
11秒前
11秒前
瓦罐完成签到 ,获得积分10
11秒前
12秒前
jeremy完成签到,获得积分10
12秒前
13秒前
我只属于你i完成签到,获得积分10
13秒前
隐形曼青应助koi采纳,获得10
14秒前
SYLH应助RRRCY采纳,获得20
15秒前
科研疯狗发布了新的文献求助30
16秒前
默默问晴发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831