已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Short-Term Power Load Forecasting With a TimesNet-Crossformer-LSTM Approach

期限(时间) 计算机科学 功率(物理) 技术预测 人工智能 量子力学 物理
作者
Jun He,Kuidong Yuan,Zijie Zhong,Yifan Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 56774-56788 被引量:3
标识
DOI:10.1109/access.2024.3383912
摘要

Efficient and accurate short-term electric load forecasting plays a significant role in energy conservation and reducing carbon emissions. Recurrent neural networks (RNN) and their derived deep learning models have continuously improved the accuracy of short-term load predictions. However, traditional deep learning models, constrained by the one-dimensional structure of time series data, struggle to capture the relationships within and between periods. And when performing load forecasting tasks, these models tend to establish temporal relationships in the time dimension while overlooking the relationships between different feature variable dimensions. In order to address both, this paper proposes a Crossformer-based TimesNet-LSTM method for short-term electric load forecasting. The proposed approach takes historical load data as input and leverages the unique structure of TimesNet to convert the one-dimensional time series into a two-dimensional space for information extraction. The Crossformer model with double attention mechanisms is then employed to capture the relationships between sequences, time, and feature variables in different dimensions. Finally, the LSTM computes the output results. Experimental calculations on publicly available datasets from Australia and the United States demonstrate the superior performance of the proposed model compared to traditional single models and other hybrid models in short-term forecasting of multidimensional electricity load data. The Mean Absolute Percentage Error (MAPE) achieved on the Australian dataset is 0.52%, while on the U.S. dataset it is 0.53%. These outstanding results highlight the universality and robustness of the model. The proposed Crossformer-based TimesNet-LSTM method not only overcomes the limitations of traditional one-dimensional deep learning models but also enhances the accuracy of short-term electric load forecasting. Its application has significant implications for energy saving and carbon emission reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助清念采纳,获得10
1秒前
富贵儿完成签到 ,获得积分10
3秒前
某某某发布了新的文献求助10
3秒前
5秒前
6秒前
6秒前
WSQ2130应助huang采纳,获得10
7秒前
樱桃味的火苗完成签到,获得积分10
9秒前
无问发布了新的文献求助10
10秒前
香蕉觅云应助彼岸花采纳,获得10
12秒前
dreamsci发布了新的文献求助10
12秒前
13秒前
16秒前
18秒前
袁小红完成签到,获得积分10
19秒前
21秒前
火星上以南完成签到,获得积分10
21秒前
Jeffery发布了新的文献求助10
21秒前
小小斌发布了新的文献求助10
23秒前
suer发布了新的文献求助10
26秒前
ASH完成签到 ,获得积分10
26秒前
成就念芹完成签到,获得积分10
27秒前
28秒前
在水一方应助二三采纳,获得10
29秒前
Struggle完成签到 ,获得积分10
29秒前
壮观的访枫完成签到,获得积分10
30秒前
LIVE完成签到,获得积分10
32秒前
小小斌完成签到,获得积分10
32秒前
彼岸花发布了新的文献求助10
33秒前
38秒前
42秒前
43秒前
Rainhit发布了新的文献求助10
44秒前
jiangmax发布了新的文献求助10
45秒前
清爽冬莲发布了新的文献求助10
47秒前
雨文发布了新的文献求助10
47秒前
susu发布了新的文献求助20
48秒前
49秒前
二三发布了新的文献求助10
49秒前
浩银发布了新的文献求助10
50秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833527
求助须知:如何正确求助?哪些是违规求助? 3376006
关于积分的说明 10491403
捐赠科研通 3095552
什么是DOI,文献DOI怎么找? 1704447
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771740