Heterogeneous graph community detection method based on K-nearest neighbor graph neural network

图形 计算机科学 人工智能 模式识别(心理学) 理论计算机科学
作者
Xiaoyang Liu,Yudie Wu,Giacomo Fiumara,Pasquale De Meo
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230356
摘要

Traditional community detection models either ignore the feature space information and require a large amount of domain knowledge to define the meta-paths manually, or fail to distinguish the importance of different meta-paths. To overcome these limitations, we propose a novel heterogeneous graph community detection method (called KGNN_HCD, heterogeneous graph Community Detection method based on K-nearest neighbor Graph Neural Network). Firstly, the similarity matrix is generated to construct the topological structure of K-nearest neighbor graph; secondly, the meta-path information matrix is generated using a meta-path transformation layer (Mp-Trans Layer) by adding weighted convolution; finally, a graph convolutional network (GCN) is used to learn high-quality node representation, and the k-means algorithm is adopted on node embeddings to detect the community structure. We perform extensive experiments and on three heterogeneous datasets, ACM, DBLP and IMDB, and we consider as competitors 11 community detection methods such as CP-GNN and GTN. The experimental results show that the proposed KGNN_HCD method improves 2.54% and 2.56% on the ACM dataset, 2.59% and 1.47% on the DBLP dataset, and 1.22% and 1.67% on the IMDB dataset for both NMI and ARI. Experiments findings suggest that the proposed KGNN_HCD method is reasonable and effective, and KGNN_HCD can be applied to complex network classification and clustering tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
hh完成签到,获得积分10
3秒前
善学以致用应助苏颜鱼采纳,获得10
4秒前
薄荷味发布了新的文献求助10
4秒前
怀想天空完成签到,获得积分20
4秒前
淡然慕山完成签到,获得积分10
6秒前
10秒前
10秒前
能力越小责任越小完成签到,获得积分10
12秒前
大胆秋灵发布了新的文献求助10
13秒前
lin发布了新的文献求助10
15秒前
科研通AI2S应助小绵羊采纳,获得10
16秒前
FashionBoy应助小绵羊采纳,获得10
16秒前
科研通AI2S应助小绵羊采纳,获得10
16秒前
16秒前
冷酷向薇完成签到,获得积分10
17秒前
Aries完成签到,获得积分10
19秒前
22秒前
kk2024驳回了桐桐应助
23秒前
无头人完成签到 ,获得积分10
26秒前
CRSG发布了新的文献求助10
28秒前
29秒前
科研通AI5应助小石头采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
打打应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
张彩红完成签到,获得积分10
31秒前
英姑应助科研通管家采纳,获得20
31秒前
残幻应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
31秒前
呆萌的雁荷完成签到,获得积分10
32秒前
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842773
求助须知:如何正确求助?哪些是违规求助? 3384782
关于积分的说明 10537332
捐赠科研通 3105356
什么是DOI,文献DOI怎么找? 1710232
邀请新用户注册赠送积分活动 823561
科研通“疑难数据库(出版商)”最低求助积分说明 774137