In-situ process monitoring and adaptive quality enhancement in laser additive manufacturing: A critical review

标杆管理 过程(计算) 故障检测与隔离 计算机科学 标准化 系统工程 质量(理念) 工艺工程 可靠性工程 工程类 人工智能 执行机构 哲学 业务 营销 操作系统 认识论
作者
Lequn Chen,Guijun Bi,Xiling Yao,Jinlong Su,Chaolin Tan,Wenhe Feng,Michalis Benakis,Youxiang Chew,Seung Ki Moon
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 527-574 被引量:78
标识
DOI:10.1016/j.jmsy.2024.04.013
摘要

Laser Additive Manufacturing (LAM) presents unparalleled opportunities for fabricating complex, high-performance structures and components with unique material properties. Despite these advancements, achieving consistent part quality and process repeatability remains challenging. This paper provides a comprehensive review of various state-of-the-art in-situ process monitoring techniques, including optical-based monitoring, acoustic-based sensing, laser line scanning, and operando X-ray monitoring. These techniques are evaluated for their capabilities and limitations in detecting defects within Laser Powder Bed Fusion (LPBF) and Laser Directed Energy Deposition (LDED) processes. Furthermore, the review discusses emerging multisensor monitoring and machine learning (ML)-assisted defect detection methods, benchmarking ML models tailored for in-situ defect detection. The paper also discusses in-situ adaptive defect remediation strategies that advance LAM towards zero-defect autonomous operations, focusing on real-time closed-loop feedback control and defect correction methods. Research gaps such as the need for standardization, improved reliability and sensitivity, and decision-making strategies beyond early stopping are highlighted. Future directions are proposed, with an emphasis on multimodal sensor fusion for multiscale defect prediction and fault diagnosis, ultimately enabling self-adaptation in LAM processes. This paper aims to equip researchers and industry professionals with a holistic understanding of the current capabilities, limitations, and future directions in in-situ process monitoring and adaptive quality enhancement in LAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zltinger发布了新的文献求助10
1秒前
杨阳发布了新的文献求助10
2秒前
2秒前
3秒前
科研通AI6应助里予采纳,获得10
3秒前
3秒前
3秒前
doa完成签到,获得积分10
3秒前
4秒前
5秒前
辰扞发布了新的文献求助10
6秒前
ph发布了新的文献求助10
6秒前
无机盐发布了新的文献求助10
7秒前
7秒前
ming发布了新的文献求助30
8秒前
张张发布了新的文献求助10
10秒前
10秒前
10秒前
YXYYXYYXY发布了新的文献求助10
10秒前
hebo发布了新的文献求助10
10秒前
11秒前
FashionBoy应助薛喜康采纳,获得10
11秒前
ding应助杨阳采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
aa完成签到,获得积分10
13秒前
春野花枝完成签到,获得积分10
14秒前
我是老大应助于冰清采纳,获得10
14秒前
Orange应助云端有风采纳,获得10
14秒前
蚊蚊爱读书应助辰扞采纳,获得10
15秒前
15秒前
16秒前
maruko完成签到,获得积分20
16秒前
科研通AI6应助李六一采纳,获得10
17秒前
TT完成签到,获得积分20
17秒前
bkagyin应助张张采纳,获得10
17秒前
17秒前
18秒前
ph完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599307
求助须知:如何正确求助?哪些是违规求助? 4684893
关于积分的说明 14836988
捐赠科研通 4667699
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783