Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France

人工智能 计算机科学 机器学习 医学
作者
Vincent Alcazer,Grégoire Le Meur,Marie Roccon,Sabrina Barriere,Baptiste Le Calvez,Bouchra Badaoui,Agathe Spaeth,Olivier Kosmider,Nicolas Freynet,Marion Eveillard,Carolyne Croizier,Simon Chevalier,Pierre Sujobert
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (5): e323-e333 被引量:14
标识
DOI:10.1016/s2589-7500(24)00044-x
摘要

BackgroundAcute leukaemias are life-threatening haematological cancers characterised by the infiltration of transformed immature haematopoietic cells in the blood and bone marrow. Prompt and accurate diagnosis of the three main acute leukaemia subtypes (ie acute lymphocytic leukaemia [ALL], acute myeloid leukaemia [AML], and acute promyelocytic leukaemia [APL]) is of utmost importance to guide initial treatment and prevent early mortality but requires cytological expertise that is not always available. We aimed to benchmark different machine-learning strategies using a custom variable selection algorithm to propose an extreme gradient boosting model to predict leukaemia subtypes on the basis of routine laboratory parameters.MethodsThis multicentre model development and validation study was conducted with data from six independent French university hospital databases. Patients aged 18 years or older diagnosed with AML, APL, or ALL in any one of these six hospital databases between March 1, 2012, and Dec 31, 2021, were recruited. 22 routine parameters were collected at the time of initial disease evaluation; variables with more than 25% of missing values in two datasets were not used for model training, leading to the final inclusion of 19 parameters. The performances of the final model were evaluated on internal testing and external validation sets with area under the receiver operating characteristic curves (AUCs), and clinically relevant cutoffs were chosen to guide clinical decision making. The final tool, Artificial Intelligence Prediction of Acute Leukemia (AI-PAL), was developed from this model.Findings1410 patients diagnosed with AML, APL, or ALL were included. Data quality control showed few missing values for each cohort, with the exception of uric acid and lactate dehydrogenase for the cohort from Hôpital Cochin. 679 patients from Hôpital Lyon Sud and Centre Hospitalier Universitaire de Clermont-Ferrand were split into the training (n=477) and internal testing (n=202) sets. 731 patients from the four other cohorts were used for external validation. Overall AUCs across all validation cohorts were 0·97 (95% CI 0·95–0·99) for APL, 0·90 (0·83–0·97) for ALL, and 0·89 (0·82–0·95) for AML. Cutoffs were then established on the overall cohort of 1410 patients to guide clinical decisions. Confident cutoffs showed two (0·14%) wrong predictions for ALL, four (0·28%) wrong predictions for APL, and three (0·21%) wrong predictions for AML. Use of the overall cutoff greatly reduced the number of missing predictions; diagnosis was proposed for 1375 (97·5%) of 1410 patients for each category, with only a slight increase in wrong predictions. The final model evaluation across both the internal testing and external validation sets showed accuracy of 99·5% for ALL diagnosis, 98·8% for AML diagnosis, and 99·7% for APL diagnosis in the confident model and accuracy of 87·9% for ALL diagnosis, 86·3% for AML diagnosis, and 96·1% for APL diagnosis in the overall model.InterpretationAI-PAL allowed for accurate diagnosis of the three main acute leukaemia subtypes. Based on ten simple laboratory parameters, its broad availability could help guide initial therapies in a context where cytological expertise is lacking, such as in low-income countries.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助maomao采纳,获得10
1秒前
乔治韦斯莱完成签到 ,获得积分10
2秒前
小二郎应助大智若愚啊采纳,获得10
2秒前
賢様666完成签到,获得积分10
2秒前
Ling99完成签到 ,获得积分10
4秒前
科研通AI5应助CX330采纳,获得10
4秒前
小胡发布了新的文献求助10
4秒前
顾矜应助阿邦同学采纳,获得10
6秒前
小蘑菇应助正月初九采纳,获得10
6秒前
7秒前
充电宝应助zhengzh采纳,获得30
7秒前
7秒前
7秒前
高木同学完成签到,获得积分10
8秒前
桥豆麻袋完成签到,获得积分10
8秒前
9秒前
10秒前
Scss发布了新的文献求助10
11秒前
田様应助迷途羔羊采纳,获得10
12秒前
12秒前
小王发布了新的文献求助10
12秒前
Y2024发布了新的文献求助10
14秒前
田様应助yyy采纳,获得10
15秒前
15秒前
婉枫完成签到,获得积分10
16秒前
无名花生发布了新的文献求助30
16秒前
安的沛白完成签到,获得积分10
16秒前
nczpf2010发布了新的文献求助10
18秒前
sun完成签到,获得积分10
18秒前
完美世界应助董昱森采纳,获得10
20秒前
21秒前
匿名游客完成签到,获得积分10
21秒前
邵裘发布了新的文献求助10
22秒前
Orange应助reck采纳,获得10
22秒前
23秒前
共享精神应助小章采纳,获得10
23秒前
量子星尘发布了新的文献求助200
23秒前
木子木应助羊觅夏采纳,获得20
23秒前
Imp完成签到,获得积分10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212045
求助须知:如何正确求助?哪些是违规求助? 3746166
关于积分的说明 11787691
捐赠科研通 3414112
什么是DOI,文献DOI怎么找? 1873454
邀请新用户注册赠送积分活动 927878
科研通“疑难数据库(出版商)”最低求助积分说明 837317