亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France

人工智能 计算机科学 机器学习 医学
作者
Vincent Alcazer,Grégoire Le Meur,Marie Roccon,Sabrina Barriere,Baptiste Le Calvez,Bouchra Badaoui,Agathe Spaeth,Olivier Kosmider,Nicolas Freynet,Marion Eveillard,Carolyne Croizier,Simon Chevalier,Pierre Sujobert
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (5): e323-e333 被引量:7
标识
DOI:10.1016/s2589-7500(24)00044-x
摘要

BackgroundAcute leukaemias are life-threatening haematological cancers characterised by the infiltration of transformed immature haematopoietic cells in the blood and bone marrow. Prompt and accurate diagnosis of the three main acute leukaemia subtypes (ie acute lymphocytic leukaemia [ALL], acute myeloid leukaemia [AML], and acute promyelocytic leukaemia [APL]) is of utmost importance to guide initial treatment and prevent early mortality but requires cytological expertise that is not always available. We aimed to benchmark different machine-learning strategies using a custom variable selection algorithm to propose an extreme gradient boosting model to predict leukaemia subtypes on the basis of routine laboratory parameters.MethodsThis multicentre model development and validation study was conducted with data from six independent French university hospital databases. Patients aged 18 years or older diagnosed with AML, APL, or ALL in any one of these six hospital databases between March 1, 2012, and Dec 31, 2021, were recruited. 22 routine parameters were collected at the time of initial disease evaluation; variables with more than 25% of missing values in two datasets were not used for model training, leading to the final inclusion of 19 parameters. The performances of the final model were evaluated on internal testing and external validation sets with area under the receiver operating characteristic curves (AUCs), and clinically relevant cutoffs were chosen to guide clinical decision making. The final tool, Artificial Intelligence Prediction of Acute Leukemia (AI-PAL), was developed from this model.Findings1410 patients diagnosed with AML, APL, or ALL were included. Data quality control showed few missing values for each cohort, with the exception of uric acid and lactate dehydrogenase for the cohort from Hôpital Cochin. 679 patients from Hôpital Lyon Sud and Centre Hospitalier Universitaire de Clermont-Ferrand were split into the training (n=477) and internal testing (n=202) sets. 731 patients from the four other cohorts were used for external validation. Overall AUCs across all validation cohorts were 0·97 (95% CI 0·95–0·99) for APL, 0·90 (0·83–0·97) for ALL, and 0·89 (0·82–0·95) for AML. Cutoffs were then established on the overall cohort of 1410 patients to guide clinical decisions. Confident cutoffs showed two (0·14%) wrong predictions for ALL, four (0·28%) wrong predictions for APL, and three (0·21%) wrong predictions for AML. Use of the overall cutoff greatly reduced the number of missing predictions; diagnosis was proposed for 1375 (97·5%) of 1410 patients for each category, with only a slight increase in wrong predictions. The final model evaluation across both the internal testing and external validation sets showed accuracy of 99·5% for ALL diagnosis, 98·8% for AML diagnosis, and 99·7% for APL diagnosis in the confident model and accuracy of 87·9% for ALL diagnosis, 86·3% for AML diagnosis, and 96·1% for APL diagnosis in the overall model.InterpretationAI-PAL allowed for accurate diagnosis of the three main acute leukaemia subtypes. Based on ten simple laboratory parameters, its broad availability could help guide initial therapies in a context where cytological expertise is lacking, such as in low-income countries.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助精明平露采纳,获得10
10秒前
xixi应助fewsaf采纳,获得10
13秒前
C_Cppp完成签到 ,获得积分10
17秒前
21秒前
也是难得取个名完成签到 ,获得积分10
26秒前
精明平露发布了新的文献求助10
27秒前
孙刚完成签到 ,获得积分10
44秒前
45秒前
cuihao发布了新的文献求助10
50秒前
培培完成签到 ,获得积分10
50秒前
科研通AI5应助精明平露采纳,获得10
52秒前
53秒前
eee发布了新的文献求助10
59秒前
stevenliu67完成签到,获得积分10
1分钟前
都市隶人完成签到,获得积分10
1分钟前
1分钟前
xixi应助吕吕采纳,获得10
1分钟前
都市隶人发布了新的文献求助10
1分钟前
纯情的无色完成签到 ,获得积分10
1分钟前
我真的要好好学习完成签到 ,获得积分10
1分钟前
科研通AI5应助都市隶人采纳,获得10
1分钟前
HY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助精明平露采纳,获得10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
1分钟前
精明平露发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
Amadeus发布了新的文献求助20
2分钟前
精明平露发布了新的文献求助10
2分钟前
芳华如梦完成签到 ,获得积分10
2分钟前
2分钟前
英俊的铭应助Amadeus采纳,获得10
2分钟前
雪白元风完成签到 ,获得积分10
2分钟前
2分钟前
ding应助rayy采纳,获得10
2分钟前
科研通AI2S应助VDC采纳,获得30
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782631
求助须知:如何正确求助?哪些是违规求助? 3328049
关于积分的说明 10234257
捐赠科研通 3042990
什么是DOI,文献DOI怎么找? 1670427
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971