激发态
激进的
简并能级
计算
微扰理论(量子力学)
化学
碳氢化合物
自旋(空气动力学)
计算化学
原子物理学
量子力学
物理
计算机科学
热力学
算法
有机化学
作者
James D. Green,Timothy J. H. Hele
摘要
Recent years have seen an explosion of interest in organic radicals due to their promise for highly efficient organic light-emitting diodes and molecular qubits. However, accurately and inexpensively computing their electronic structure has been challenging, especially for excited states, due to the spin-contamination problem. Furthermore, while alternacy or “pseudoparity” rules have guided the interpretation and prediction of the excited states of closed-shell hydrocarbons since the 1950s, similar general rules for hydrocarbon radicals have not to our knowledge been found yet. In this article, we present solutions to both of these challenges. First, we combine the extended configuration interaction singles method with Pariser–Parr–Pople (PPP) theory to obtain a method that we call ExROPPP (Extended Restricted Open-shell PPP) theory. We find that ExROPPP computes spin-pure excited states of hydrocarbon radicals with comparable accuracy to experiment as high-level general multi-configurational quasi-degenerate perturbation theory calculations but at a computational cost that is at least two orders of magnitude lower. We then use ExROPPP to derive widely applicable rules for the spectra of alternant hydrocarbon radicals, which are completely consistent with our computed results. These findings pave the way for highly accurate and efficient computation and prediction of the excited states of organic radicals.
科研通智能强力驱动
Strongly Powered by AbleSci AI