Prediction of miRNA-disease Associations by Deep Matrix Decomposition Method based on Fused Similarity Information

相似性(几何) 分解 矩阵分解 疾病 计算机科学 人工智能 基质(化学分析) 数据挖掘 计算生物学 模式识别(心理学) 医学 生物 化学 内科学 物理 色谱法 生态学 特征向量 量子力学 图像(数学)
作者
Xia Chen,Qiang Qu,Xiang Zhang,Hao Nie,Xiuxiu Chao,Weihao Ou,Hao Chen,Xiangzheng Fu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 (6): 545-556
标识
DOI:10.2174/0115748936300759240712061707
摘要

Aim: MicroRNAs (miRNAs), pivotal regulators in various biological processes, are closely linked to human diseases. This study aims to propose a computational model, SIDMF, for predicting miRNA-disease associations. Background: Computational methods have proven efficient in predicting miRNA-disease associations, leveraging functional similarity and network-based inference. Machine learning techniques, including support vector machines, semi-supervised algorithms, and deep learning models, have gained prominence in this domain. Objective: Develop a computational model that integrates disease semantic similarity and miRNA functional similarity within a deep matrix factorization framework to predict potential associations between miRNAs and diseases accurately. Methods: SIDMF, introduced in this study, integrates disease semantic similarity and miRNA functional similarity within a deep matrix factorization framework. Through the reconstruction of the miRNA-disease association matrix, SIDMF predicts potential associations between miRNAs and diseases. Results: The performance of SIDMF was evaluated using global Leave-One-Out Cross-Validation (LOOCV) and local LOOCV, achieving high Area Under the Curve (AUC) values of 0.9536 and 0.9404, respectively. Comparative analysis against other methods demonstrated the superior performance of SIDMF. Case studies on breast cancer, esophageal cancer, and prostate cancer further validated SIDMF's predictive accuracy, with a substantial percentage of the top 50 predicted miRNAs confirmed in relevant databases. Conclusion: SIDMF emerges as a promising computational model for predicting potential associations between miRNAs and diseases. Its robust performance in global and local evaluations, along with successful case studies, underscores its potential contributions to disease prevention, diagnosis, and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小送完成签到,获得积分10
1秒前
科目三应助哈尼采纳,获得10
1秒前
2秒前
脑洞疼应助Bingtao_Lian采纳,获得10
3秒前
4秒前
czy发布了新的文献求助30
5秒前
6秒前
7秒前
风趣蜡烛发布了新的文献求助10
8秒前
8秒前
114koi发布了新的文献求助20
8秒前
zz完成签到,获得积分10
8秒前
9秒前
温暖访枫发布了新的文献求助10
10秒前
Snoopy发布了新的文献求助10
10秒前
GZY完成签到,获得积分10
11秒前
百无聊赖本人完成签到,获得积分20
12秒前
12秒前
小马甲应助hhhxxx采纳,获得10
12秒前
12秒前
鲤鱼青槐发布了新的文献求助10
13秒前
13秒前
com完成签到,获得积分10
13秒前
14秒前
14秒前
友好访蕊发布了新的文献求助10
15秒前
烟花应助温婉的以松采纳,获得10
15秒前
千尔完成签到 ,获得积分10
16秒前
执着傲旋关注了科研通微信公众号
17秒前
科研通AI6应助南下采纳,获得10
17秒前
17秒前
罗氏集团发布了新的文献求助10
18秒前
派大星应助纷雪采纳,获得20
19秒前
司马立果发布了新的文献求助10
19秒前
隐形曼青应助mll采纳,获得10
19秒前
世界完成签到,获得积分10
19秒前
乐乐应助友好访蕊采纳,获得10
21秒前
THP完成签到,获得积分10
21秒前
苏su发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287819
求助须知:如何正确求助?哪些是违规求助? 4439834
关于积分的说明 13823167
捐赠科研通 4322057
什么是DOI,文献DOI怎么找? 2372274
邀请新用户注册赠送积分活动 1367845
关于科研通互助平台的介绍 1331344