LC–MS/MS analysis of twelve neurotransmitters and amino acids in mouse cerebrospinal fluid

脑脊液 衍生化 化学 组胺 开阔地 高香草酸 多巴胺 代谢物 神经科学 谷氨酸受体 氨基酸 神经递质 血清素 色谱法 生物化学 药理学 质谱法 生物 内分泌学 受体
作者
María Encarnación Blanco,Olga Barca‐Mayo,Tiziano Bandiera,Davide De Pietri Tonelli,Andrea Armirotti
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:341: 108760-108760 被引量:16
标识
DOI:10.1016/j.jneumeth.2020.108760
摘要

So far, analytical investigation of neuroactive molecules in cerebrospinal fluid (CSF) of rodent models has been limited to rats, given the intrinsic anatomic difficulties related to mice sampling and the corresponding tiny amounts of CSF obtained. This poses a challenge for the research in neuroscience, where many, if not most, animal models for neuronal disorders rely on mice. We introduce a new, sensitive and robust LC–MS/MS method to analyze a panel of twelve neuroactive molecules (NM) from mouse CSF (aspartic acid, serine, glycine, glutamate, γ-aminobutyric acid, norepinephrine, epinephrine, acetylcholine, dopamine, serotonin, histamine and its metabolite 1-metylhistamine). The paper describes the sampling procedure that allows the collection of 1−2 microliters of pure CSF from individual mouse specimens. To test its applicability, we challenged our method on the field, by sampling 37 individual animals, thus demonstrating its strength and reliability. Compared to other methods, our procedure does not involve any extraction nor derivatization steps: samples are simply diluted and analyzed as such by LC–MS/MS, using a dedicated ion pairing agent in the chromatographic setup. The panel of neuroactive molecules that is analyzed in a single run is also significantly higher compared to other methods. Given the number of mouse models used in the neuroscience research, we believe that our work will pave new ways to more advanced research in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZZZZ完成签到,获得积分10
1秒前
河北发布了新的文献求助10
1秒前
1秒前
way完成签到,获得积分10
1秒前
yy完成签到,获得积分10
2秒前
库里强发布了新的文献求助10
2秒前
科研牛人完成签到,获得积分10
2秒前
silin发布了新的文献求助10
2秒前
唠叨的觅松完成签到,获得积分10
3秒前
夏侯以旋完成签到,获得积分10
4秒前
seven_yao应助十二采纳,获得20
4秒前
4秒前
Akim应助罚克由尔采纳,获得10
4秒前
向往生活完成签到,获得积分10
4秒前
微笑的冰烟完成签到,获得积分10
4秒前
5秒前
Jasper应助荔枝采纳,获得10
5秒前
5秒前
可耐的紫夏完成签到,获得积分10
5秒前
huangxiaoniu完成签到,获得积分10
7秒前
简单的冬瓜完成签到,获得积分10
7秒前
快乐的元霜完成签到 ,获得积分10
7秒前
麦子完成签到 ,获得积分10
7秒前
陶子发布了新的文献求助10
8秒前
张艳梅发布了新的文献求助10
8秒前
abtitw完成签到,获得积分10
8秒前
Su完成签到,获得积分10
9秒前
Joy发布了新的文献求助30
9秒前
周小鱼发布了新的文献求助10
9秒前
飞云发布了新的文献求助10
10秒前
cdercder应助简单的冬瓜采纳,获得10
10秒前
搜集达人应助txkahy采纳,获得10
10秒前
10秒前
HEIKU应助Sandy采纳,获得10
12秒前
xiaohongmao完成签到,获得积分10
12秒前
无限草丛完成签到,获得积分10
12秒前
Solitude完成签到,获得积分10
13秒前
科研通AI5应助轻歌水越采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834097
求助须知:如何正确求助?哪些是违规求助? 3376554
关于积分的说明 10493831
捐赠科研通 3096024
什么是DOI,文献DOI怎么找? 1704828
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868