恒化器
非线性系统
独特性
摄动(天文学)
平稳分布
李雅普诺夫函数
消光(光学矿物学)
应用数学
数学
控制理论(社会学)
限制
随机建模
统计物理学
数学分析
计算机科学
物理
统计
马尔可夫链
工程类
地质学
机械工程
古生物学
人工智能
量子力学
光学
细菌
控制(管理)
作者
Xingwang Yu,Sanling Yuan
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2019-12-12
卷期号:25 (7): 2373-2390
被引量:30
标识
DOI:10.3934/dcdsb.2020014
摘要
In this paper, a stochastic chemostat model with two distributed delays and nonlinear perturbation is proposed. We first transform the stochastic model into an equivalent high-dimensional system. Then we prove the existence and uniqueness of global positive solution of the model. Based on Khasminskii's theory, we study the existence of a stationary distribution of the model by constructing a suitable stochastic Lyapunov function. Then we also establish sufficient conditions for the extinction of the plankton. Finally, numerical simulations are carried out to illustrate the theoretical results and to conclude our study, which shows that environmental noise experienced by limiting nutrient completely determines the persistence and extinction of the plankton.
科研通智能强力驱动
Strongly Powered by AbleSci AI