亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real‐time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video)

医学 诊断准确性 食管癌 食管鳞状细胞癌 放射科 人工智能 癌症 内科学 计算机科学
作者
Xiaoxiao Yang,Zhen Li,Xuejun Shao,Rui Ji,Junyan Qu,Mengqi Zheng,Yining Sun,Ruchen Zhou,Hang You,Lixiang Li,Jian Feng,Xiaoyun Yang,Yanqing Li,Xiuli Zuo
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:33 (7): 1075-1084 被引量:54
标识
DOI:10.1111/den.13908
摘要

Background and aims Endoscopic diagnosis of early esophageal squamous cell cancer (ESCC) is complicated and dependent on operators' experience. This study aimed to develop an artificial intelligence (AI) model for automatic diagnosis of early ESCC. Methods Non‐magnifying and magnifying endoscopic images of normal/noncancerous lesions, early ESCC, and advanced esophageal cancer (AEC) were retrospectively obtained from Qilu Hospital of Shandong University. A total of 10,988 images from 5075 cases were chosen for training and validation. Another 2309 images from 1055 cases were collected for testing. One hundred and four real‐time videos were also collected to evaluate the diagnostic performance of the AI model. The diagnostic performance of the AI model was compared with endoscopists by magnifying images and the assistant efficiency of the AI model for novices was evaluated. Results The AI diagnosis for non‐magnifying images showed a per‐patient accuracy, sensitivity, and specificity of 99.5%, 100%, 99.5% for white light imaging, and 97.0%, 97.2%, 96.4% for optical enhancement/iodine straining images. Regarding diagnosis for magnifying images, the per‐patient accuracy, sensitivity, and specificity were 88.1%, 90.9%, and 85.0%. The diagnostic accuracy of the AI model was similar to experts (84.5%, P = 0.205) and superior to novices (68.5%, P = 0.005). The diagnostic performance of novices was significantly improved by AI assistance. When it comes to the diagnosis for real‐time videos, the AI model showed acceptable performance as well. Conclusions The AI model could accurately recognize early ESCC among noncancerous mucosa and AEC. It could be a potential assistant for endoscopists, especially for novices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
14秒前
千里草完成签到,获得积分10
17秒前
唐泽雪穗发布了新的文献求助10
19秒前
20秒前
正己化人应助科研通管家采纳,获得10
1分钟前
蓄力酥油木完成签到,获得积分10
1分钟前
尊敬如天发布了新的文献求助10
2分钟前
2分钟前
菲菲发布了新的文献求助30
2分钟前
无花果应助尊敬如天采纳,获得10
2分钟前
尊敬如天完成签到,获得积分10
2分钟前
2分钟前
清秀萤发布了新的文献求助10
2分钟前
2分钟前
马潇涵发布了新的文献求助10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
微笑的红酒完成签到,获得积分10
3分钟前
Jack80完成签到,获得积分0
3分钟前
席江海完成签到,获得积分0
3分钟前
正己化人应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
清秀萤完成签到,获得积分10
3分钟前
lzy完成签到,获得积分10
3分钟前
3分钟前
arniu2008完成签到,获得积分20
4分钟前
QTQ完成签到 ,获得积分10
4分钟前
科目三应助Gryphon采纳,获得10
5分钟前
虚线完成签到 ,获得积分10
5分钟前
科研通AI6应助薛清棵采纳,获得10
5分钟前
5分钟前
5分钟前
Gryphon发布了新的文献求助10
5分钟前
Gryphon完成签到,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
行走完成签到,获得积分10
7分钟前
BBQ完成签到,获得积分10
8分钟前
科研通AI5应助hahaha123213123采纳,获得10
8分钟前
Tashanzhishi发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199530
求助须知:如何正确求助?哪些是违规求助? 4380069
关于积分的说明 13638812
捐赠科研通 4236529
什么是DOI,文献DOI怎么找? 2324113
邀请新用户注册赠送积分活动 1322112
关于科研通互助平台的介绍 1273438