清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real‐time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video)

医学 诊断准确性 食管癌 食管鳞状细胞癌 放射科 人工智能 癌症 内科学 计算机科学
作者
Xiaoxiao Yang,Zhen Li,Xuejun Shao,Rui Ji,Junyan Qu,Mengqi Zheng,Yining Sun,Ruchen Zhou,Hang You,Lixiang Li,Jian Feng,Xiaoyun Yang,Yanqing Li,Xiuli Zuo
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:33 (7): 1075-1084 被引量:51
标识
DOI:10.1111/den.13908
摘要

Background and aims Endoscopic diagnosis of early esophageal squamous cell cancer (ESCC) is complicated and dependent on operators' experience. This study aimed to develop an artificial intelligence (AI) model for automatic diagnosis of early ESCC. Methods Non‐magnifying and magnifying endoscopic images of normal/noncancerous lesions, early ESCC, and advanced esophageal cancer (AEC) were retrospectively obtained from Qilu Hospital of Shandong University. A total of 10,988 images from 5075 cases were chosen for training and validation. Another 2309 images from 1055 cases were collected for testing. One hundred and four real‐time videos were also collected to evaluate the diagnostic performance of the AI model. The diagnostic performance of the AI model was compared with endoscopists by magnifying images and the assistant efficiency of the AI model for novices was evaluated. Results The AI diagnosis for non‐magnifying images showed a per‐patient accuracy, sensitivity, and specificity of 99.5%, 100%, 99.5% for white light imaging, and 97.0%, 97.2%, 96.4% for optical enhancement/iodine straining images. Regarding diagnosis for magnifying images, the per‐patient accuracy, sensitivity, and specificity were 88.1%, 90.9%, and 85.0%. The diagnostic accuracy of the AI model was similar to experts (84.5%, P = 0.205) and superior to novices (68.5%, P = 0.005). The diagnostic performance of novices was significantly improved by AI assistance. When it comes to the diagnosis for real‐time videos, the AI model showed acceptable performance as well. Conclusions The AI model could accurately recognize early ESCC among noncancerous mucosa and AEC. It could be a potential assistant for endoscopists, especially for novices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
项目多多完成签到,获得积分10
3秒前
knight7m完成签到 ,获得积分10
8秒前
修狗狗完成签到,获得积分10
19秒前
阳光森林完成签到 ,获得积分10
20秒前
王王完成签到 ,获得积分10
25秒前
小白白白完成签到 ,获得积分10
38秒前
gao完成签到 ,获得积分10
43秒前
啊强完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
吴红波完成签到,获得积分10
56秒前
Monicadd完成签到 ,获得积分10
57秒前
耕牛热完成签到,获得积分10
1分钟前
吴红波发布了新的文献求助10
1分钟前
1分钟前
石贵远完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分10
1分钟前
LiAlan发布了新的文献求助10
1分钟前
科研怪人完成签到 ,获得积分10
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
FL完成签到 ,获得积分10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
叶问夏完成签到 ,获得积分10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
扫地888完成签到 ,获得积分10
1分钟前
Regina完成签到 ,获得积分10
1分钟前
2分钟前
苗笑卉发布了新的文献求助10
2分钟前
2分钟前
斯文败类应助苗笑卉采纳,获得10
2分钟前
姜姜完成签到,获得积分10
2分钟前
20240901发布了新的文献求助10
2分钟前
2分钟前
Lz555完成签到 ,获得积分10
2分钟前
苗笑卉完成签到,获得积分10
2分钟前
打工人一枚完成签到,获得积分10
2分钟前
Yy完成签到 ,获得积分10
2分钟前
SCINEXUS完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助50
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030122
求助须知:如何正确求助?哪些是违规求助? 3568858
关于积分的说明 11356392
捐赠科研通 3299658
什么是DOI,文献DOI怎么找? 1816803
邀请新用户注册赠送积分活动 890936
科研通“疑难数据库(出版商)”最低求助积分说明 813961