Making sense: Sensor-based investigation of clinician activities in complex critical care environments

计算机科学 工作流程 数据科学 一致性(知识库) 人机交互 人工智能 数据库
作者
Thomas George Kannampallil,Zhe Li,Min Zhang,Trevor Cohen,David Robinson,Amy Franklin,Jiajie Zhang,Vimla L. Patel
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:44 (3): 441-454 被引量:40
标识
DOI:10.1016/j.jbi.2011.02.007
摘要

In many respects, the critical care workplace resembles a paradigmatic complex system: on account of the dynamic and interactive nature of collaborative clinical work, these settings are characterized by non-linear, inter-dependent and emergent activities. Developing a comprehensive understanding of the work activities in critical care settings enables the development of streamlined work practices, better clinician workflow and most importantly, helps in the avoidance of and recovery from potential errors. Sensor-based technology provides a flexible and viable way to complement human observations by providing a mechanism to capture the nuances of certain activities with greater precision and timing. In this paper, we use sensor-based technology to capture the movement and interactions of clinicians in the Trauma Center of an Emergency Department (ED). Remarkable consistency was found between sensor data and human observations in terms of clinician locations and interactions. With this validation and greater precision with sensors, ED environment was characterized in terms of (a) the degree of randomness or entropy in the environment, (b) the movement patterns of clinicians, (c) interactions with other clinicians and finally, (d) patterns of collaborative organization with team aggregation and dispersion. Based on our results, we propose three opportunities for the use of sensor technologies in critical care settings: as a mechanism for real-time monitoring and analysis for ED activities, education and training of clinicians, and perhaps most importantly, investigating the root-causes, origins and progression of errors in the ED. Lessons learned and the challenges encountered in designing and implementing the sensor technology sensor data are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想得开居士完成签到,获得积分10
刚刚
刚刚
1秒前
仙女保苗发布了新的文献求助10
1秒前
1秒前
xingfeng发布了新的文献求助10
1秒前
sss完成签到 ,获得积分10
2秒前
2秒前
鱼会淹死吗完成签到,获得积分0
2秒前
3秒前
呆萌的蛋挞完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
4秒前
PiX0发布了新的文献求助10
5秒前
传奇3应助文献自由侠采纳,获得10
6秒前
7秒前
大智若愚啊完成签到,获得积分20
7秒前
7秒前
风中远山发布了新的文献求助30
7秒前
8秒前
8秒前
ZhangYuan发布了新的文献求助10
8秒前
仲侣弥月发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
9秒前
10秒前
10秒前
亲皮皮完成签到,获得积分10
12秒前
阡陌发布了新的文献求助10
13秒前
靓丽冬灵发布了新的文献求助10
14秒前
sci喷涌而出完成签到,获得积分10
16秒前
ding应助呆萌的蛋挞采纳,获得10
16秒前
Akim应助靓丽冬灵采纳,获得10
18秒前
子车茗应助cyt采纳,获得10
18秒前
fifteen应助Little Mianmian采纳,获得10
18秒前
子车茗应助Little Mianmian采纳,获得20
19秒前
化学小学生完成签到,获得积分10
19秒前
Nora完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404233
求助须知:如何正确求助?哪些是违规求助? 3890509
关于积分的说明 12107666
捐赠科研通 3535237
什么是DOI,文献DOI怎么找? 1939823
邀请新用户注册赠送积分活动 980732
科研通“疑难数据库(出版商)”最低求助积分说明 877456