产能规划
计算机科学
半导体器件制造
集合(抽象数据类型)
约束(计算机辅助设计)
稳健优化
产品(数学)
需求预测
整数规划
数学优化
随机规划
预算约束
整数(计算机科学)
灵敏度(控制系统)
运筹学
需求模式
工业工程
需求管理
工程类
经济
数学
算法
几何学
机械工程
程序设计语言
电子工程
薄脆饼
宏观经济学
新古典经济学
电气工程
操作系统
作者
S.J. Hood,Stuart Bermon,Francisco Barahona
标识
DOI:10.1109/tsm.2003.811894
摘要
In the semiconductor industry, capacity planning, the calculation of number of tools needed to manufacture forecasted product demands, is difficult because of sensitivity to product mix and uncertainty in future demand. Planning for a single demand profile can result in a large gap between planned capacity and actual capability when the realized product mix turns out differently from the one planned. This paper presents a method which accepts this uncertainty and uses stochastic integer programming to find a tool set robust to changes in demand. It considers a set of possible, discrete demand scenarios with associated probabilities, and determines the tools to purchase, under a budget constraint, to minimize weighted average unmet demand. The resulting robust tool set deals well with all the scenarios at no or minimal additional cost compared to that for a single demand profile. We also discuss the modifications of conventional business processes, needed to implement this method for dealing explicitly with uncertainty in demand.
科研通智能强力驱动
Strongly Powered by AbleSci AI