Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning

高光谱成像 非线性降维 计算机科学 歧管(流体力学) 歧管对齐 非线性系统 架空(工程) 代表(政治) 航程(航空) 外部数据表示 模式识别(心理学) 人工智能 降维 物理 机械工程 工程类 材料科学 量子力学 政治 法学 政治学 复合材料 操作系统
作者
Dalton Lunga,Saurabh Prasad,Melba M. Crawford,Okan K. Ersoy
出处
期刊:IEEE Signal Processing Magazine [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 55-66 被引量:277
标识
DOI:10.1109/msp.2013.2279894
摘要

Advances in hyperspectral sensing provide new capability for characterizing spectral signatures in a wide range of physical and biological systems, while inspiring new methods for extracting information from these data. HSI data often lie on sparse, nonlinear manifolds whose geometric and topological structures can be exploited via manifold-learning techniques. In this article, we focused on demonstrating the opportunities provided by manifold learning for classification of remotely sensed data. However, limitations and opportunities remain both for research and applications. Although these methods have been demonstrated to mitigate the impact of physical effects that affect electromagnetic energy traversing the atmosphere and reflecting from a target, nonlinearities are not always exhibited in the data, particularly at lower spatial resolutions, so users should always evaluate the inherent nonlinearity in the data. Manifold learning is data driven, and as such, results are strongly dependent on the characteristics of the data, and one method will not consistently provide the best results. Nonlinear manifold-learning methods require parameter tuning, although experimental results are typically stable over a range of values, and have higher computational overhead than linear methods, which is particularly relevant for large-scale remote sensing data sets. Opportunities for advancing manifold learning also exist for analysis of hyperspectral and multisource remotely sensed data. Manifolds are assumed to be inherently smooth, an assumption that some data sets may violate, and data often contain classes whose spectra are distinctly different, resulting in multiple manifolds or submanifolds that cannot be readily integrated with a single manifold representation. Developing appropriate characterizations that exploit the unique characteristics of these submanifolds for a particular data set is an open research problem for which hierarchical manifold structures appear to have merit. To date, most work in manifold learning has focused on feature extraction from single images, assuming stationarity across the scene. Research is also needed in joint exploitation of global and local embedding methods in dynamic, multitemporal environments and integration with semisupervised and active learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪莫茗发布了新的文献求助10
刚刚
yeah发布了新的文献求助10
1秒前
ZYQ完成签到,获得积分10
3秒前
积极万声发布了新的文献求助10
3秒前
3秒前
玲玲玲发布了新的文献求助10
4秒前
4秒前
科研通AI6应助呀学习采纳,获得10
5秒前
夜雨完成签到,获得积分10
7秒前
7秒前
7秒前
辰坤完成签到 ,获得积分10
7秒前
惊执虫儿完成签到,获得积分10
7秒前
8秒前
10秒前
玲儿发布了新的文献求助10
11秒前
71发布了新的文献求助10
11秒前
咕咕发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助100
12秒前
yueban完成签到,获得积分10
12秒前
张晓龙发布了新的文献求助10
13秒前
komo发布了新的文献求助10
14秒前
幸福大白发布了新的文献求助10
14秒前
小马甲应助NXK采纳,获得10
15秒前
15秒前
科研通AI6应助Forest采纳,获得10
15秒前
17秒前
小白完成签到,获得积分10
18秒前
Ling完成签到,获得积分10
18秒前
小杭76应助Flipped采纳,获得10
19秒前
深情安青应助wop111采纳,获得10
19秒前
明亮幻枫完成签到,获得积分10
19秒前
hengqian发布了新的文献求助10
20秒前
倾城发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
科研通AI6应助游元稔采纳,获得30
24秒前
坚强的白羊完成签到,获得积分20
24秒前
sss完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850247
求助须知:如何正确求助?哪些是违规求助? 4149592
关于积分的说明 12854560
捐赠科研通 3897053
什么是DOI,文献DOI怎么找? 2141966
邀请新用户注册赠送积分活动 1161567
关于科研通互助平台的介绍 1061439