已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The ‘ins’ and ‘outs’ of flavonoid transport

类黄酮 液泡 生物 胞浆 流出 功能(生物学) 类黄酮生物合成 细胞生物学 植物细胞 生物化学 转录组 细胞质 基因 基因表达 抗氧化剂
作者
Jian Zhao,Richard A. Dixon
出处
期刊:Trends in Plant Science [Elsevier]
卷期号:15 (2): 72-80 被引量:472
标识
DOI:10.1016/j.tplants.2009.11.006
摘要

The sites of plant flavonoid biosynthesis, storage and final function often differ at the subcellular, cell, and even tissue and organ levels. Efficient transport systems for flavonoids across endomembranes and the plasma membrane are therefore required. However, a clear picture of the dynamic trafficking of flavonoids is only now beginning to emerge and appears to have many players. Here, we review current hypotheses for flavonoid transport, discuss whether these are mutually exclusive, highlight the importance of flavonoid efflux from vacuoles to the cytosol and consider future efforts to catch flavonoids ‘in the act’ of moving within and between cells. An improved understanding of transport mechanisms will facilitate the successful metabolic engineering of flavonoids for plant protection and human health. The sites of plant flavonoid biosynthesis, storage and final function often differ at the subcellular, cell, and even tissue and organ levels. Efficient transport systems for flavonoids across endomembranes and the plasma membrane are therefore required. However, a clear picture of the dynamic trafficking of flavonoids is only now beginning to emerge and appears to have many players. Here, we review current hypotheses for flavonoid transport, discuss whether these are mutually exclusive, highlight the importance of flavonoid efflux from vacuoles to the cytosol and consider future efforts to catch flavonoids ‘in the act’ of moving within and between cells. An improved understanding of transport mechanisms will facilitate the successful metabolic engineering of flavonoids for plant protection and human health. a large superfamily of ATP-binding cassette (ABC) proteins. They usually contain a nucleotide-binding domain and a transmembrane domain for mediating MgATP-energized transmembrane transport and/or regulation of other transporters [41]. Different subfamilies of ABC transporters have essential and diverse roles in the transport of metal ions and primary and secondary metabolites across membranes. intravacuolar bodies of varying sizes containing concentrated anthocyanins. AVIs are observable in petal cells of carnation (Dianthus caryophyllus) and lisianthus (Eustoma grandiflorum), and in other anthocyanin-accumulating cells in grapevine, sweet potato (Ipomoea batatas), and maize. AVIs do not have membrane boundaries, but contain membrane lipids and a protein matrix bound to anthocyanins, particularly acylated anthocyanins [19]. initially used to describe cytoplasmic membrane-bound vesicles containing high levels of anthocyanins and regarded as anthocyanin biosynthetic sites. However, later studies confused them with anthocyanic vacuolar inclusion (AVIs), which are more widely observed inside the vacuoles of many plant species. Anthocyanoplasts are found exclusively in the cytoplasm in grapevine cells, and in protoplasts prepared from red radish (Raphanus sativus) seedlings. multidrug and toxic compound extrusion (MATE) family transporters. They use H+/Na+ gradients across membranes as a force to drive waste or toxic compounds out of the cytoplasm. MATE transporters perform conserved and basic transport functions in most prokaryotes and eukaryotes. an endocytic multivesicle compartment involved in ER-Golgi-vacuole vesicle trafficking. It carries proteins and other metabolites to fuse to the large central vacuole. The PVC has SNAREs or vacuolar-sorting receptors to accept precursor vesicles and then fuse to the vacuole. A specific type of PVC in lisianthus epidermal cells contains anthocyanin and was proposed to transport anthocyanins into the central vacuole (19). a type of vacuole and compound organelle formed during plant seed development and maturation and containing large amounts of storage proteins. PSVs contain vacuolar-sorting receptors to recognize cargo molecules. A PSV marker co-localizes with anthocyanins, leading to the suggestion that anthocyanins are transported directly via ER-derived vesicle trafficking in a Golgi-independent manner (22). soluble N-ethylmaleimide-sensitive factor attachment protein receptors. These are small but abundant integral membrane proteins that mediate vesicle fusion and reside on the surface of the transport vesicle (v-SNAREs) and target membrane (t-SNAREs). They have a cytosolic domain called a SNARE motif, which assembles with another SNARE motif into parallel four-helix bundles within SNARE complexes and brings the transmembrane anchors and the two membrane vesicles into close proximity. abundant organelles in the tapetum cells of anthers during the active stage of pollen maturation in Brassicaceae species. Tapetosomes originate from massive ER cisternae, which release lipid droplets that are fused into large vesicles. These lipid vesicles further fuse with ER-derived vesicles containing flavonoids. Upon tapetum cell death, tapetosomes release alkanes and oleosins in lipid droplets, along with flavonoids, to the pollen surface. a dynamic series of membrane compartments at the trans- face of the Golgi stacks. The TGN mainly processes and sorts various proteins and glycolipids at the interface of the biosynthetic and endosomal pathways. The generation and maintenance of apical and basolateral membranes relies on sorting events that occur in the TGN. integral membrane proteins responsible for the proper targeting of cargo proteins to their destination compartments. VSRs are localized to ER, PVC, TGN and Golgi apparatus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘辰完成签到 ,获得积分10
刚刚
nangua完成签到,获得积分20
刚刚
化学课die表完成签到 ,获得积分10
刚刚
欣慰迎荷完成签到,获得积分10
1秒前
勇往直前完成签到,获得积分10
3秒前
嘿嘿应助自由的氧化铝采纳,获得10
3秒前
哇呀呀完成签到 ,获得积分10
3秒前
xxx完成签到 ,获得积分10
3秒前
陈欣瑶完成签到 ,获得积分10
3秒前
张磊完成签到,获得积分10
4秒前
4秒前
小阳阳5010完成签到 ,获得积分10
4秒前
田柾国完成签到,获得积分10
5秒前
流星雨完成签到 ,获得积分10
5秒前
留欧完成签到 ,获得积分10
5秒前
成就书雪完成签到,获得积分10
6秒前
忧郁完成签到 ,获得积分10
6秒前
乐乐侠完成签到 ,获得积分10
6秒前
。。。发布了新的文献求助10
6秒前
慕玖淇完成签到 ,获得积分10
7秒前
liuliu完成签到,获得积分10
8秒前
甲乙丙丁完成签到 ,获得积分10
8秒前
小凯完成签到 ,获得积分0
8秒前
Lucas应助科科采纳,获得10
10秒前
CCC完成签到 ,获得积分10
10秒前
豌豆完成签到 ,获得积分10
11秒前
标致的过客完成签到,获得积分10
11秒前
门门完成签到 ,获得积分10
11秒前
cc完成签到 ,获得积分10
12秒前
12秒前
qqq完成签到,获得积分10
12秒前
浮游应助。。。采纳,获得10
12秒前
昔年若许完成签到,获得积分10
12秒前
mickle完成签到 ,获得积分10
13秒前
顺利山柏完成签到 ,获得积分10
14秒前
机智若云完成签到,获得积分0
14秒前
冷静的尔云完成签到,获得积分10
15秒前
王佳慧完成签到 ,获得积分20
16秒前
云淡风轻一宝完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401120
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078529
捐赠科研通 4433194
什么是DOI,文献DOI怎么找? 2434025
邀请新用户注册赠送积分活动 1426148
关于科研通互助平台的介绍 1404738

今日热心研友

,。
2 20
ceeray23
4
浮游
2 10
爱笑的蛇
2
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10