Transfer learning approach to map urban slums using high and medium resolution satellite imagery

遥感 卫星 地理 市区
作者
Deepank Verma,Arnab Jana,Krithi Ramamritham
出处
期刊:Habitat International 卷期号:88: 101981- 被引量:25
标识
DOI:10.1016/j.habitatint.2019.04.008
摘要

Abstract Slums provide cheaper workforce and informal services which contribute substantially towards GDP. However, such areas, due to the high population density, sub-standard housing and lack of essential services are urban risks. The socio-physical development of such settlements has often been neglected due to poor laws and provisions in urban management and policies. One of the primary reasons for negligence has been the unavailability of slum maps to study the evolution of slums and to actively manage and contain them. Various remote sensing techniques have been utilized to answer the problem but have not produced universal solutions. In recent years, Deep Learning (DL) techniques with remote sensing have been found beneficial in comprehending the underlying structure of physical features present in the satellite imageries. This study deals with one of the Deep Learning techniques which use pre-trained convolutional networks for slum detection in Very High Resolution (VHR) and Medium Resolution (MR) satellite imagery. We created a training dataset which comprises of four classes including slums, built, green and water. We further trained the model to detect these classes in the entire city. Classification performance was evaluated for Very high and Medium Resolution imagery with the help of manually delineated slum boundaries gathered from urban local authorities of Mumbai. The Overall accuracy of 94.2 and 90.2 and kappa of 0.70 and 0.55 is obtained from VHR and MR imagery respectively. We provide a comprehensive technique for the detection of informal settlements which can be tailored and applied to any city to detect various landforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神凰完成签到,获得积分10
2秒前
hcj发布了新的文献求助10
3秒前
月yue发布了新的文献求助10
3秒前
月野兔完成签到,获得积分10
3秒前
姚小包子发布了新的文献求助10
4秒前
library2025发布了新的文献求助10
4秒前
yourkit发布了新的文献求助10
5秒前
zxczs完成签到,获得积分20
5秒前
6秒前
nenoaowu发布了新的文献求助10
9秒前
9秒前
林子发布了新的文献求助10
10秒前
李健应助零度酷冷采纳,获得10
10秒前
鸿鲤完成签到 ,获得积分10
10秒前
李爱国应助龙喵喵采纳,获得10
11秒前
龚仕杰完成签到 ,获得积分10
12秒前
14秒前
月yue完成签到,获得积分10
14秒前
传奇3应助大头和小头采纳,获得10
16秒前
烟喜完成签到,获得积分10
17秒前
17秒前
yourkit发布了新的文献求助10
17秒前
林子完成签到,获得积分10
18秒前
科研通AI5应助月yue采纳,获得10
18秒前
19秒前
oxs完成签到 ,获得积分10
20秒前
21秒前
桐桐应助Pzz采纳,获得10
22秒前
yourkit完成签到,获得积分10
24秒前
24秒前
杜杜发布了新的文献求助10
24秒前
Ting完成签到 ,获得积分10
25秒前
丹丹发布了新的文献求助10
25秒前
Ava应助含蓄绿兰采纳,获得10
26秒前
星睿发布了新的文献求助10
26秒前
26秒前
姚小包子完成签到,获得积分10
29秒前
小熊维C发布了新的文献求助10
29秒前
领导范儿应助含蓄绿兰采纳,获得10
30秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819331
求助须知:如何正确求助?哪些是违规求助? 3362423
关于积分的说明 10416934
捐赠科研通 3080581
什么是DOI,文献DOI怎么找? 1694630
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403