血管生成
血管生成
生物
标记法
川地31
细胞生物学
病理
细胞凋亡
管腔(解剖学)
解剖
癌症研究
祖细胞
干细胞
医学
生物化学
作者
F. Tertemiz,Umit A. Kayisli,Aydın Arıcı,Ramazan Demir
标识
DOI:10.1095/biolreprod.104.034975
摘要
Placental vasculogenesis consists of several stages, including appearance of hemangioblasts and angiogenic cell islands, setting up a primitive vascular network, and transition from vasculogenesis to sprouting and nonsprouting angiogenesis. In the present study, we hypothesized that placental vasculogenesis and angiogenesis require apoptosis during the formation of primitive vascular pattern, vessel elongation, and angiogenic branching. Vasculogenesis and apoptotic cells were identified using CD31 immunohistochemistry, hematoxylin-eosin (H-E) staining, CD31-TUNEL double-labeling, and transmission-electron microscopy (TEM). No TUNEL-positive cell was detected in angiogenic cell islands; however, several TUNEL-positive cells were observed during the primitive lumen formation. Interestingly, some of the stromal cells located between vasculogenic areas during the endothelial tube elongation and angiogenic branching also were TUNEL-positive. The presence of morphological aspects of apoptosis, such as nuclear shrinkage and nuclear bodies (apoptotic bodies), also was confirmed in H-E-stained and TEM-depicted sections. Quantitative analysis showed that higher ratios for apoptotic cells were found in the core stroma of villi among the vascular branching areas and in the primitive capillary lumen compared to angiogenic cell cords and vasculatures with advanced lumens (P < 0.05). In conclusion, our results suggest that apoptosis likely is involved in the physiologic mechanisms of placental vasculogenesis and angiogenesis, such as lumen formation and angiogenic branching.
科研通智能强力驱动
Strongly Powered by AbleSci AI