What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis

萧条(经济学) 心理学 心情 精神科 抑郁症状 DSM-5 中心性 临床心理学 焦虑 数学 组合数学 宏观经济学 经济
作者
Eiko I. Fried,Sacha Epskamp,Randolph M. Nesse,Francis Tuerlinckx,Denny Borsboom
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:189: 314-320 被引量:636
标识
DOI:10.1016/j.jad.2015.09.005
摘要

The symptoms for Major Depression (MD) defined in the DSM-5 differ markedly from symptoms assessed in common rating scales, and the empirical question about core depression symptoms is unresolved. Here we conceptualize depression as a complex dynamic system of interacting symptoms to examine what symptoms are most central to driving depressive processes. We constructed a network of 28 depression symptoms assessed via the Inventory of Depressive Symptomatology (IDS-30) in 3,463 depressed outpatients from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. We estimated the centrality of all IDS-30 symptoms, and compared the centrality of DSM and non-DSM symptoms; centrality reflects the connectedness of each symptom with all other symptoms. A network with 28 intertwined symptoms emerged, and symptoms differed substantially in their centrality values. Both DSM symptoms (e.g., sad mood) and non-DSM symptoms (e.g., anxiety) were among the most central symptoms, and DSM criteria were not more central than non-DSM symptoms. Many subjects enrolled in STAR*D reported comorbid medical and psychiatric conditions which may have affected symptom presentation. The network perspective neither supports the standard psychometric notion that depression symptoms are equivalent indicators of MD, nor the common assumption that DSM symptoms of depression are of higher clinical relevance than non-DSM depression symptoms. The findings suggest the value of research focusing on especially central symptoms to increase the accuracy of predicting outcomes such as the course of illness, probability of relapse, and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可爱完成签到,获得积分10
3秒前
华仔应助小木子采纳,获得10
4秒前
研友_VZG7GZ应助小超人采纳,获得10
6秒前
科研通AI5应助陈静怡采纳,获得10
7秒前
不安的晓灵完成签到 ,获得积分10
7秒前
beichuanheqi应助tesla采纳,获得10
8秒前
科研通AI5应助典雅的静采纳,获得10
8秒前
于莹完成签到,获得积分10
15秒前
17秒前
典雅夜安关注了科研通微信公众号
20秒前
wangyang完成签到 ,获得积分10
20秒前
21秒前
科研小谢发布了新的文献求助10
22秒前
25秒前
26秒前
beichuanheqi应助tesla采纳,获得10
27秒前
www完成签到 ,获得积分10
29秒前
SYLH应助苗条辣条采纳,获得10
29秒前
Orange应助柚子茶茶茶采纳,获得10
30秒前
活力雁枫完成签到,获得积分10
30秒前
31秒前
木木三发布了新的文献求助10
32秒前
32秒前
搜集达人应助纪瑄采纳,获得10
33秒前
所所应助伊可采纳,获得10
33秒前
33秒前
科研通AI5应助陈静怡采纳,获得10
34秒前
35秒前
CodeCraft应助可乐不加冰采纳,获得10
35秒前
35秒前
自由的小翠完成签到 ,获得积分10
36秒前
36秒前
黄3完成签到 ,获得积分10
37秒前
饭ff发布了新的文献求助10
37秒前
典雅夜安发布了新的文献求助30
39秒前
吴颖完成签到,获得积分20
40秒前
zzz发布了新的文献求助10
41秒前
41秒前
42秒前
小破网发布了新的文献求助10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367855
关于积分的说明 10448181
捐赠科研通 3087314
什么是DOI,文献DOI怎么找? 1698581
邀请新用户注册赠送积分活动 816841
科研通“疑难数据库(出版商)”最低求助积分说明 769973