Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 计算机安全 数学 进化生物学 生物
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:16
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我超越完成签到,获得积分10
刚刚
重要的强炫完成签到,获得积分10
1秒前
April完成签到,获得积分10
3秒前
所所应助优雅的平安采纳,获得10
4秒前
科研牛马发布了新的文献求助10
6秒前
xiaoze完成签到,获得积分10
7秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得30
7秒前
慕青应助科研通管家采纳,获得10
7秒前
aprilvanilla应助科研通管家采纳,获得10
7秒前
aprilvanilla应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得20
7秒前
852应助科研通管家采纳,获得10
8秒前
aprilvanilla应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
感动的念双完成签到,获得积分10
12秒前
Ying完成签到,获得积分10
14秒前
小李完成签到,获得积分10
14秒前
14秒前
Yang完成签到 ,获得积分10
15秒前
小小邓完成签到,获得积分10
15秒前
wang1完成签到 ,获得积分10
17秒前
热情孤丹发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776240
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207338
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666499
邀请新用户注册赠送积分活动 797502
科研通“疑难数据库(出版商)”最低求助积分说明 757868