Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach

计算机科学 利用 背景(考古学) 现存分类群 产品(数学) 数据科学 人工智能 服务(商务) 知识管理 机器学习 营销 业务 古生物学 几何学 计算机安全 数学 进化生物学 生物
作者
Zelin Zhang,Kejia Yang,Jonathan Z. Zhang,Robert W. Palmatier
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2339-2360 被引量:22
标识
DOI:10.1287/mnsc.2022.4443
摘要

Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existing modeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions’ average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply the model in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework’s ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. The model can guide managers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability and managerial insights. This paper was accepted by Gui Liberali, marketing. Funding: The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4443 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小蓝采纳,获得30
刚刚
1秒前
虚心的问丝完成签到,获得积分10
2秒前
隐形曼青应助新陈采纳,获得10
2秒前
3秒前
3秒前
bkagyin应助老将采纳,获得10
4秒前
5秒前
科研通AI6应助Jay采纳,获得10
5秒前
6秒前
6秒前
王晓发布了新的文献求助10
6秒前
7秒前
MYhang发布了新的文献求助10
8秒前
9秒前
9秒前
stick发布了新的文献求助10
10秒前
小透明发布了新的文献求助30
12秒前
12秒前
12秒前
waubycid完成签到,获得积分10
14秒前
16秒前
夕荀发布了新的文献求助10
17秒前
彭于晏应助小孙要努力采纳,获得10
18秒前
pan完成签到,获得积分20
18秒前
科研通AI6应助yuan采纳,获得20
19秒前
19秒前
打打应助乘风破浪采纳,获得10
20秒前
安详涫发布了新的文献求助10
20秒前
王友进发布了新的文献求助10
22秒前
22秒前
22秒前
ivy完成签到,获得积分10
22秒前
24秒前
开朗寻凝完成签到,获得积分10
24秒前
MYhang完成签到,获得积分10
25秒前
xxx发布了新的文献求助10
25秒前
28秒前
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4508260
求助须知:如何正确求助?哪些是违规求助? 3955610
关于积分的说明 12262421
捐赠科研通 3615866
什么是DOI,文献DOI怎么找? 1989500
邀请新用户注册赠送积分活动 1025983
科研通“疑难数据库(出版商)”最低求助积分说明 917429