Lifting Velocity as a Predictor of the Maximum Number of Repetitions That Can Be Performed to Failure During the Prone Bench Pull Exercise

台式压力机 可靠性(半导体) 数学 统计 会话(web分析) 医学 物理疗法 阻力训练 物理 计算机科学 热力学 万维网 功率(物理)
作者
Sergio Miras‐Moreno,Alejandro Pérez‐Castilla,Amador García‐Ramos
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:17 (8): 1213-1221 被引量:27
标识
DOI:10.1123/ijspp.2021-0534
摘要

Objective : To explore (1) the goodness of fit of generalized and individualized relationships between the maximum number of repetitions performed to failure (RTF) and the fastest mean velocity and peak velocity of the sets (RTF–velocity relationships), (2) the between-sessions reliability of mean velocity and peak velocity values associated with different RTFs, and (3) whether the errors in the prediction of the RTF under fatigued and nonfatigued conditions differ between generalized and individualized RTF–velocity relationships. Methods : Twenty-three sport-science students performed 4 testing sessions with the prone bench pull exercise in a Smith machine: a 1-repetition-maximum [1RM] session, 2 identical sessions consisting of singles sets of RTF against 4 randomized loads (60%–70%–80%–90%1RM), and 1 session consisting of 4 sets of RTF against the 75%1RM. Results : Individualized RTF–velocity relationships presented a higher goodness of fit ( r 2 = .96–.97 vs .67–.70) and accuracy (absolute errors = 2.1–2.9 repetitions vs 2.8–4.3 repetitions) in the prediction of the RTF than generalized RTF–velocity relationships. The reliability of the velocity values associated with different RTFs was generally high (average within-subject coefficient of variation = 4.01% for mean velocity and 3.98% for peak velocity). The error in the prediction of the RTF increased by ~1 repetition under fatigue (ie, set 1 vs sets 2–4). Conclusions : Individualized RTF–velocity relationships can be used with acceptable precision and reliability to prescribe the loads associated with a given RTF during the match a specific XRM during the prone bench pull exercise, but a lower accuracy is expected in a fatigued state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郦稀完成签到,获得积分10
刚刚
刚刚
午木完成签到,获得积分10
1秒前
1秒前
顺心从霜发布了新的文献求助10
1秒前
满意的醉蝶完成签到,获得积分10
1秒前
啦哈啦哈啦完成签到,获得积分10
1秒前
沐沐汐完成签到 ,获得积分10
2秒前
1111完成签到,获得积分10
2秒前
todo完成签到,获得积分10
3秒前
大方百招完成签到,获得积分10
3秒前
改长杉发布了新的文献求助10
3秒前
x_x完成签到,获得积分10
4秒前
知了完成签到,获得积分10
4秒前
天阳完成签到,获得积分10
5秒前
zy发布了新的文献求助10
5秒前
Acanyi完成签到,获得积分10
5秒前
fanch1122完成签到,获得积分10
6秒前
皑似山上雪完成签到,获得积分10
6秒前
姜丝罐罐n完成签到 ,获得积分10
7秒前
今后应助陈M雯采纳,获得10
7秒前
卡布达完成签到,获得积分10
8秒前
儒雅的若翠完成签到,获得积分10
8秒前
llk完成签到,获得积分10
9秒前
害羞秋莲完成签到,获得积分10
9秒前
WHT完成签到,获得积分10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Stella应助科研通管家采纳,获得10
9秒前
蛋花肉圆汤完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得20
9秒前
过奖啦完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得20
9秒前
9秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
小青椒应助科研通管家采纳,获得30
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599985
求助须知:如何正确求助?哪些是违规求助? 4685775
关于积分的说明 14839394
捐赠科研通 4674628
什么是DOI,文献DOI怎么找? 2538482
邀请新用户注册赠送积分活动 1505631
关于科研通互助平台的介绍 1471109