Federated Learning with Sparsified Model Perturbation: Improving Accuracy under Client-Level Differential Privacy

差别隐私 计算机科学 联合学习 GSM演进的增强数据速率 人工智能 方案(数学) 边缘设备 信息隐私 机器学习 算法 计算机安全 数学 云计算 数学分析 操作系统
作者
Rui Hu,Yan Gong,Yuanxiong Guo
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2202.07178
摘要

Federated learning (FL) that enables edge devices to collaboratively learn a shared model while keeping their training data locally has received great attention recently and can protect privacy in comparison with the traditional centralized learning paradigm. However, sensitive information about the training data can still be inferred from model parameters shared in FL. Differential privacy (DP) is the state-of-the-art technique to defend against those attacks. The key challenge to achieving DP in FL lies in the adverse impact of DP noise on model accuracy, particularly for deep learning models with large numbers of parameters. This paper develops a novel differentially-private FL scheme named Fed-SMP that provides a client-level DP guarantee while maintaining high model accuracy. To mitigate the impact of privacy protection on model accuracy, Fed-SMP leverages a new technique called Sparsified Model Perturbation (SMP) where local models are sparsified first before being perturbed by Gaussian noise. We provide a tight end-to-end privacy analysis for Fed-SMP using Renyi DP and prove the convergence of Fed-SMP with both unbiased and biased sparsifications. Extensive experiments on real-world datasets are conducted to demonstrate the effectiveness of Fed-SMP in improving model accuracy with the same DP guarantee and saving communication cost simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老迟到的友菱完成签到,获得积分10
1秒前
1秒前
dzh完成签到,获得积分10
1秒前
huhu发布了新的文献求助10
1秒前
1秒前
蓝蓝蓝完成签到,获得积分10
3秒前
无问西东完成签到,获得积分10
3秒前
YingLi完成签到,获得积分10
4秒前
4秒前
月月发布了新的文献求助10
4秒前
4秒前
XBP发布了新的文献求助10
6秒前
6秒前
6秒前
思源应助huhu采纳,获得10
6秒前
7秒前
Tao完成签到,获得积分10
7秒前
流星发布了新的文献求助10
7秒前
7秒前
情怀应助胖Q采纳,获得10
8秒前
qqq完成签到,获得积分10
8秒前
英俊的铭应助DXXX采纳,获得10
8秒前
乐乐应助坚定背包采纳,获得10
9秒前
呼呼完成签到,获得积分10
9秒前
内向绿竹发布了新的文献求助10
9秒前
大个应助等待惜文采纳,获得10
9秒前
9秒前
yxl完成签到,获得积分10
10秒前
10秒前
wy.he应助XHL采纳,获得20
11秒前
qq发布了新的文献求助10
11秒前
蓝蓝蓝发布了新的文献求助10
11秒前
11秒前
mmdxt发布了新的文献求助10
12秒前
日富一日发布了新的文献求助10
12秒前
辛勤的乐曲完成签到,获得积分10
12秒前
12秒前
感性的寄真完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808716
求助须知:如何正确求助?哪些是违规求助? 3353476
关于积分的说明 10365281
捐赠科研通 3069664
什么是DOI,文献DOI怎么找? 1685735
邀请新用户注册赠送积分活动 810675
科研通“疑难数据库(出版商)”最低求助积分说明 766286