Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions

自愈水凝胶 变形 执行机构 软机器人 软质材料 机器人 计算机科学 仿生学 纳米技术 材料科学 人工智能 机械工程 工程类 高分子化学
作者
Dejin Jiao,Qing Zhu,Chenyu Li,Qiang Zheng,Zi Liang Wu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (11): 1533-1545 被引量:169
标识
DOI:10.1021/acs.accounts.2c00046
摘要

ConspectusNature provides abundant inspiration and elegant paradigms for the development of smart materials that can actuate, morph, and move on demand. One remarkable capacity of living organisms is to adapt their shapes or positions in response to stimuli. Programmed deformations or movements in plant organs are mainly driven by water absorption/dehydration of cells, while versatile motions of mollusks are based on contraction/extension of muscles. Understanding the general principles of these morphing and motion behaviors can give rise to disruptive technologies for soft robotics, flexible electronics, biomedical devices, etc. As one kind of intelligent material, hydrogels with high similarity to soft biotissues and diverse responses to external stimuli are an ideal candidate to construct soft actuators and robots.The objective of this Account is to give an overview of the fundamental principles for controllable deformations and motions of hydrogels, with a focus on the structure designs and responsive functions of the corresponding soft actuators and robots. This field has been rapidly developed in recent years with a growing understanding of working principles in natural organisms and a substantial revolution of manufacturing technologies to devise bioinspired hydrogel systems with desired structures. Diverse morphing hydrogels and soft actuators/robots have been developed on the basis of several pioneering works, ranging from bending and folding deformations of bilayer hydrogels to self-shaping of non-Euclidean hydrogel surfaces, and from thermoactuated bilayer gel "hands" to electrodriven polyelectrolyte gel "worms". These morphing hydrogels have demonstrated active functions and versatile applications in biomedical and engineering fields.In this Account, we discuss recent progress in morphing hydrogels and highlight the design principles and relevant applications. First, we introduce the fundamentals of basic deformation modes, together with generic structure features, actuation strategies, and morphing mechanisms. The advantages of in-plane gradient structures are highlighted for programmable deformations by harnessing the out-of-plane buckling with bistability nature to obtain sophisticated three-dimensional configurations. Next, we give an overview of soft actuators and robots based on morphing hydrogels and focus on the working principles of the active systems with different structure designs. We discuss the advancements of hydrogel-based soft robots capable of swift locomotion with different gaits and emphasize the significances of structure control and dynamic actuation. Then we summarize versatile applications of hydrogel-based actuators and robots in biomedicines, cargo delivery, soft electronics, information encryption, and so forth. Some hydrogel robots with a built-in feedback loop and self-sensing system exhibit collaborative functions and advanced intelligence that are informative for the design of next-generation hydrogel machines. Finally, concluding remarks are given to discuss future opportunities and remaining challenges in this field. For example, miniature hydrogel-based actuators/robots with therapeutic or diagnostic functions are highly desired for biomedical applications. The morphing mechanisms summarized in this Account should be applicable to other responsive materials. We hope that this Account will inspire more scientists to be involved in this emerging area and make contributions to reveal novel working principles, design multifunctional soft machines, and explore applications in diverse fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的凛发布了新的文献求助10
1秒前
小贩发布了新的文献求助10
1秒前
千迁完成签到,获得积分10
3秒前
isssa完成签到 ,获得积分10
3秒前
3秒前
4秒前
培培完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
qy完成签到,获得积分10
4秒前
5秒前
Bluebulu完成签到,获得积分10
5秒前
梓喵发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
8秒前
是小王ya完成签到,获得积分10
8秒前
8秒前
方咖啡应助ALLUDO采纳,获得10
8秒前
蝶步韶华发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
10秒前
11秒前
木兰换装发布了新的文献求助10
11秒前
yang发布了新的文献求助10
11秒前
myth完成签到,获得积分10
11秒前
咋能真发布了新的文献求助10
12秒前
月眠眠发布了新的文献求助10
12秒前
13秒前
王豪发布了新的文献求助50
13秒前
无花果应助年轻的宛采纳,获得10
14秒前
高高发布了新的文献求助10
14秒前
危机的慕卉完成签到 ,获得积分10
14秒前
15秒前
龍焱完成签到,获得积分10
16秒前
Gakay完成签到,获得积分10
17秒前
科目三应助xiaobai采纳,获得10
17秒前
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095136
求助须知:如何正确求助?哪些是违规求助? 3633294
关于积分的说明 11516572
捐赠科研通 3344025
什么是DOI,文献DOI怎么找? 1837912
邀请新用户注册赠送积分活动 905421
科研通“疑难数据库(出版商)”最低求助积分说明 823171