凝聚态物理
磁性
材料科学
铁磁性
锰铁矿
旋转玻璃
铁磁共振
顺磁性
成核
相(物质)
钙钛矿(结构)
磁化
物理
结晶学
磁场
化学
热力学
量子力学
作者
Diego Carranza-Celis,Elizabeth Skoropata,Amlan Biswas,M. R. Fitzsimmons,Iván K. Schuller,Juan Gabriel Ramírez
标识
DOI:10.1103/physrevmaterials.5.124413
摘要
We performed ferromagnetic resonance measurements of a ${({\mathrm{La}}_{1\ensuremath{-}x}{\mathrm{Pr}}_{x})}_{1\ensuremath{-}y}{\mathrm{Ca}}_{y}\mathrm{Mn}{\mathrm{O}}_{3\ensuremath{-}\ensuremath{\delta}}$ with $x=0.52\ifmmode\pm\else\textpm\fi{}0.05, y=0.23\ifmmode\pm\else\textpm\fi{}0.04$, and $\ensuremath{\delta}=0.14\ifmmode\pm\else\textpm\fi{}0.10$ thin single crystalline film which, in combination with micromagnetic simulations, reveal three temperature regions consistent with (i) a ferromagnetic-paramagnetic transition in which ferromagnetic domains nucleate and grow, (ii) followed by a filamentary fluidlike percolation of magnetic domains exhibiting dynamic processes and finally, iii) the existence of a blocking temperature below which the magnetism is a metastable glassy-like state with strong decoherence of the uniform resonance mode. Our results suggest a strain-liquid to strain-glass spin order transition in which the magnetism and fluidlike dynamics of the separated phases freeze at low temperatures. We show the magnetism dynamics depend strongly on the phase-separated state and morphology of the magnetic domains suggesting a route to control of phase separation and realization of spintronic and magnonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI