Knowledge-driven feature component interpretable network for motor imagery classification

计算机科学 人工智能 可解释性 模式识别(心理学) 特征(语言学) 运动表象 卷积神经网络 卷积(计算机科学) 人工神经网络 机器学习 心理学 语言学 精神科 哲学 脑-机接口 脑电图
作者
Xu Niu,Na Lü,Jianghong Kang,Zhiyan Cui
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (1): 016032-016032 被引量:12
标识
DOI:10.1088/1741-2552/ac463a
摘要

Objective. The end-to-end convolutional neural network (CNN) has achieved great success in motor imagery (MI) classification without a manual feature design. However, all the existing deep network solutions are purely datadriven and lack interpretability, which makes it impossible to discover insightful knowledge from the learned features, not to mention to design specific network structures. The heavy computational cost of CNN also makes it challenging for real-time application along with high classification performance.Approach. To address these problems, a novel knowledge-driven feature component interpretable network (KFCNet) is proposed, which combines spatial and temporal convolution in analogy to independent component analysis and a power spectrum pipeline. Prior frequency band knowledge of sensory-motor rhythms has been formulated as band-pass linear-phase digital finite impulse response filters to initialize the temporal convolution kernels to enable the knowledge-driven mechanism. To avoid signal distortion and achieve a linear phase and unimodality of filters, a symmetry loss is proposed, which is used in combination with the cross-entropy classification loss for training. Besides the general prior knowledge, subject-specific time-frequency property of event-related desynchronization and synchronization has been employed to construct and initialize the network with significantly fewer parameters.Main results.Comparison of experiments on two public datasets has been performed. Interpretable feature components could be observed in the trained model. The physically meaningful observation could efficiently assist the design of the network structure. Excellent classification performance on MI has been obtained.Significance. The performance of KFCNet is comparable to the state-of-the-art methods but with much fewer parameters and makes real-time applications possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bernie1023完成签到,获得积分10
1秒前
静默向上发布了新的文献求助10
1秒前
清秀龙猫完成签到 ,获得积分10
1秒前
2秒前
黄花完成签到 ,获得积分10
2秒前
3秒前
情殇完成签到,获得积分10
3秒前
YUNG完成签到 ,获得积分10
3秒前
byby完成签到,获得积分10
6秒前
yy14207发布了新的文献求助10
7秒前
橙子完成签到 ,获得积分10
8秒前
9秒前
Keyuuu30完成签到,获得积分0
9秒前
小小完成签到 ,获得积分10
10秒前
柠檬完成签到 ,获得积分10
11秒前
12秒前
12秒前
yuan完成签到,获得积分10
12秒前
lazy完成签到,获得积分20
13秒前
莫三颜完成签到,获得积分10
13秒前
小牛完成签到 ,获得积分10
13秒前
PANYS发布了新的文献求助10
14秒前
蠢宝贝完成签到,获得积分10
16秒前
16秒前
舒心的久完成签到 ,获得积分10
18秒前
时尚雨兰完成签到,获得积分10
22秒前
小超人完成签到 ,获得积分10
22秒前
Lyubb完成签到,获得积分10
23秒前
23秒前
肉片牛帅帅完成签到,获得积分10
23秒前
const完成签到,获得积分10
23秒前
半颗橙子完成签到 ,获得积分10
24秒前
贼吖完成签到 ,获得积分10
25秒前
无忧完成签到,获得积分20
26秒前
王二八发布了新的文献求助10
29秒前
古藤完成签到 ,获得积分10
29秒前
可靠之玉完成签到,获得积分10
29秒前
ZDM6094完成签到 ,获得积分10
31秒前
如意土豆完成签到 ,获得积分10
31秒前
bo完成签到 ,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513393
关于积分的说明 11167478
捐赠科研通 3248836
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664