亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Acceleration of Liquid Water Removal from Cathode Electrode of PEFC by Combination of Channel Hydrophilization and Diffusion Medium Perforation

阴极 电解质 水运 电极 氧气输送 润湿 化学 材料科学 化学工程 复合材料 氧气 水流 环境工程 工程类 物理化学 有机化学
作者
Kosuke Nishida,Yudai Kono,Masahiko Satô,Daisuke Mizuguchi
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (38): 2752-2752 被引量:1
标识
DOI:10.1149/ma2016-02/38/2752
摘要

Water flooding at cathode catalyst layer (CL) is a critical issue for high power density and long-term operation of polymer electrolyte fuel cells (PEFCs). Especially, at high current densities, excessive water produced by oxygen reduction reaction (ORR) on cathode side is rapidly condensed and accumulated inside porous electrode. When open pores in CL and gas diffusion layer (GDL) are filled with liquid water, oxygen cannot be sufficiently fed to reaction sites. To alleviate this issue, it is necessary to design the optimum channel/GDL structure for accelerating through-plane water removal. Turhan et al. [1] investigated the through-plane liquid storage, transport and flooding mechanism as a function of channel wall wettability with the use of high-resolution neutron imaging. Results revealed that hydrophilization of cathode channel forms liquid film layers around channel walls, which is difficult to purge. However, hydrophilic channel effectively enhances liquid water suction from under-land locations into gas channels. Nishida et al. [2] also demonstrated that the through-plane water transport from GDL to channel is encouraged by channel hydrophilization, and the voltage drop due to flooding is reduced. On the other hand, several researchers presented a concept of perforated GDL structure to secure sufficient water passages through porous electrode. Gerteisen et al. [3] developed the customized GDL which is structured with water transport pathways by laser perforation, and revealed that this modified GDL improves the limiting current density of 8-22%. The perforated GDL structure beneficially enhances in-plane water discharge from porous media toward large penetration holes. However, the laser perforations may act as water pooling locations under high-current and high-humidity conditions because of the removal of PTFE coating, leading to performance degradation [4]. This study proposes the novel channel/GDL combinational structure of channel hydrophilization and GDL perforation as shown in Fig. 1, in order to promote water removal through cathode electrode.Liquid water accumulated at the CL is discharged into the large penetration hole. Subsequently, the water droplets gathered in the hole gradually grow up and reach the hydrophilic channel. When these droplets are attached to the channel sidewall, they are immediately spread out on the hydrophilic surface and liquid films are moved upward along the sidewall. This water suction through the penetration hole effectively alleviates water flooding near the cathode CL. In this experiment, the liquid droplet behavior inside the cathode channel of an operating PEFC is firstly observed based on a cross-sectional visualization technique, and the effect of hydrophilic treatment of cathode channel on the enhancement of through-plane water transport and the performance improvement is investigated. Secondly, the impact of combinational structure of channel hydrophilization and GDL perforation on the reduction of water flooding is demonstrated under high-current and high-humidity conditions. The GDL perforation is carried by two different methods of electric discharge machining (EDM) and manual micro-drilling technique. The EDM method has the disadvantage of removing the PTFE coating of GDL, resulting in local water flooding. In contrast, the micro-drilling technique does not damage the hydrophobic treatment of GDL. Fig. 2 shows the changes of cell voltage during startup for two different channel/GDL structures. The red line denotes the result for the untreated channel/GDL structure; the blue line denotes the combinational structure with hydrophilized channel and perforated GDL. The effective electrode area of the cell is 2.88 cm 2 . The width, depth and total length of the gas channel are 1.0, 1.0 and 88.5 mm. The contact angle of water of the hydrophilized channel is 17 deg. In the modified cell, 35 penetration holes (Hole diameter: 0.3 mm) are installed into the cathode electrode by the micro-drilling method. The fuel cell operation is performed at 0.73 A/cm 2 for 1000 s. The inlet gas temperature and humidity are 45 deg. C and 80% RH, respectively. As shown in the figure, in the case of the untreated structure, the cell voltage drastically drops after starting due to water flooding. On the other hand, the modified channel/GDL structure gradually recovers the voltage after t=150 s, because liquid water is removed from the cathode CL. References: [1] A. Turhan, et al., Electrochim. Acta , 55 , 2734 (2010). [2] K. Nishida, et al., ECS Trans. , 69 (17), 1121 (2015). [3] D. Gerteisen, et al., J. Power Sources , 177 , 348 (2008). [4] M.P. Manahan, et al., J. Power Sources , 196 , 5573 (2011). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RZJH完成签到 ,获得积分10
2秒前
electricelectric完成签到,获得积分10
4秒前
Zyc发布了新的文献求助10
8秒前
蔡翌文完成签到 ,获得积分10
12秒前
27秒前
yc发布了新的文献求助10
28秒前
zjq完成签到,获得积分10
32秒前
内向的火车完成签到 ,获得积分10
34秒前
梦在彼岸发布了新的文献求助10
35秒前
wang完成签到,获得积分10
35秒前
Airy完成签到,获得积分10
39秒前
42秒前
整齐谷芹发布了新的文献求助10
43秒前
YifanCheng关注了科研通微信公众号
45秒前
吴彬完成签到 ,获得积分10
45秒前
牛角面包发布了新的文献求助10
48秒前
liwang9301完成签到,获得积分10
48秒前
Hillson完成签到,获得积分10
50秒前
27758发布了新的文献求助20
50秒前
深情安青应助沉静早晨采纳,获得30
51秒前
梦在彼岸完成签到,获得积分10
51秒前
AX完成签到,获得积分10
53秒前
58秒前
牛角面包完成签到,获得积分20
1分钟前
沉静早晨发布了新的文献求助30
1分钟前
研友_VZG7GZ应助27758采纳,获得10
1分钟前
1分钟前
1分钟前
Henvy应助Yancey采纳,获得10
1分钟前
沉静早晨完成签到,获得积分10
1分钟前
淡淡山兰完成签到,获得积分10
1分钟前
完美世界应助bukeshuo采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小吴完成签到,获得积分10
1分钟前
ljh024发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lx发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334757
求助须知:如何正确求助?哪些是违规求助? 4472784
关于积分的说明 13920782
捐赠科研通 4366762
什么是DOI,文献DOI怎么找? 2399217
邀请新用户注册赠送积分活动 1392372
关于科研通互助平台的介绍 1363284