Organic printed photonics: From microring lasers to integrated circuits

光子学 光子集成电路 谐振器 硅光子学 材料科学 光电子学 制作 电子线路 纳米光子学 集成电路 纳米技术 电气工程 工程类 医学 病理 替代医学
作者
Chuang Zhang,Chang‐Ling Zou,Yan Zhao,Chun‐Hua Dong,Cong Wei,Hanlin Wang,Yunqi Liu,Guang‐Can Guo,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:1 (8) 被引量:183
标识
DOI:10.1126/sciadv.1500257
摘要

A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美琦完成签到,获得积分10
刚刚
1秒前
我我我发布了新的文献求助10
2秒前
Owen应助chh1207采纳,获得30
2秒前
4秒前
利好完成签到 ,获得积分10
4秒前
无心发布了新的文献求助10
4秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
8秒前
美羊羊完成签到,获得积分10
8秒前
8秒前
无辜听寒完成签到,获得积分10
9秒前
缓慢海亦发布了新的文献求助10
9秒前
微笑的白柏完成签到,获得积分10
9秒前
果郭发布了新的文献求助10
10秒前
jhb完成签到,获得积分10
12秒前
缓慢海亦完成签到,获得积分10
15秒前
serenity711完成签到 ,获得积分10
15秒前
桐桐应助小云采纳,获得10
18秒前
Lucas应助比荷采纳,获得10
18秒前
Rojar完成签到,获得积分10
18秒前
18秒前
20秒前
善学以致用应助安静心情采纳,获得10
20秒前
苏喂苏喂完成签到,获得积分10
22秒前
脆脆秋葵发布了新的文献求助30
23秒前
呐呐呐完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630467
求助须知:如何正确求助?哪些是违规求助? 4722553
关于积分的说明 14973638
捐赠科研通 4788614
什么是DOI,文献DOI怎么找? 2557018
邀请新用户注册赠送积分活动 1517960
关于科研通互助平台的介绍 1478567