计算机科学
目标检测
人工智能
计算机视觉
建筑
停车场
深度学习
视觉对象识别的认知神经科学
工作(物理)
对象(语法)
模式识别(心理学)
工程类
地理
机械工程
土木工程
考古
作者
Tushar Agrawal,Siddhaling Urolagin
标识
DOI:10.1145/3378904.3378914
摘要
This research work aims to detect occupied and vacant spaces in the parking lot. We utilized the Mask R-CNN architecture, a deep learning object detection model, for automated recognition of parking spaces, on data obtained from multiple angles. In this work, we discuss in detail, the approach used to create a multi-angle parking detection model and the method of recognizing its validity.
科研通智能强力驱动
Strongly Powered by AbleSci AI