Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks

推论 人工神经网络 图形 基因调控网络 机器学习 人工智能 计算机科学 计算生物学 基因 生物 理论计算机科学 基因表达 遗传学
作者
Juexin Wang,Anjun Ma,Qin Ma,Dong Xu,Trupti Joshi
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:18: 3335-3343 被引量:55
标识
DOI:10.1016/j.csbj.2020.10.022
摘要

Discovering gene regulatory relationships and reconstructing gene regulatory networks (GRN) based on gene expression data is a classical, long-standing computational challenge in bioinformatics. Computationally inferring a possible regulatory relationship between two genes can be formulated as a link prediction problem between two nodes in a graph. Graph neural network (GNN) provides an opportunity to construct GRN by integrating topological neighbor propagation through the whole gene network. We propose an end-to-end gene regulatory graph neural network (GRGNN) approach to reconstruct GRNs from scratch utilizing the gene expression data, in both a supervised and a semi-supervised framework. To get better inductive generalization capability, GRN inference is formulated as a graph classification problem, to distinguish whether a subgraph centered at two nodes contains the link between the two nodes. A linked pair between a transcription factor (TF) and a target gene, and their neighbors are labeled as a positive subgraph, while an unlinked TF and target gene pair and their neighbors are labeled as a negative subgraph. A GNN model is constructed with node features from both explicit gene expression and graph embedding. We demonstrate a noisy starting graph structure built from partial information, such as Pearson's correlation coefficient and mutual information can help guide the GRN inference through an appropriate ensemble technique. Furthermore, a semi-supervised scheme is implemented to increase the quality of the classifier. When compared with established methods, GRGNN achieved state-of-the-art performance on the DREAM5 GRN inference benchmarks. GRGNN is publicly available at https://github.com/juexinwang/GRGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴实雨竹完成签到,获得积分10
刚刚
jejms完成签到,获得积分10
刚刚
蓝色的纪念完成签到,获得积分10
刚刚
脑洞疼应助chen采纳,获得10
1秒前
知12完成签到,获得积分10
1秒前
wy完成签到,获得积分20
2秒前
3秒前
4秒前
xh完成签到,获得积分20
4秒前
随梦而飞完成签到,获得积分10
4秒前
5秒前
5秒前
轻松诗霜发布了新的文献求助10
5秒前
S8完成签到,获得积分10
6秒前
乐乐应助feng采纳,获得10
6秒前
Jasper应助感动的一刀采纳,获得10
6秒前
7秒前
lihua完成签到,获得积分10
7秒前
科研通AI5应助yyy采纳,获得10
7秒前
慕青应助猪猪hero采纳,获得10
7秒前
Erueka完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
jader发布了新的文献求助10
8秒前
8秒前
张烤明完成签到,获得积分10
8秒前
哆小咪完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
英俊的铭应助GX2023采纳,获得30
10秒前
Wendy完成签到,获得积分10
10秒前
hu970完成签到,获得积分20
10秒前
10秒前
10秒前
田様应助wy采纳,获得10
11秒前
烟花应助kww采纳,获得10
11秒前
随梦而飞发布了新的文献求助10
11秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Commercial Pig Farming 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827980
求助须知:如何正确求助?哪些是违规求助? 3370256
关于积分的说明 10462337
捐赠科研通 3090205
什么是DOI,文献DOI怎么找? 1700266
邀请新用户注册赠送积分活动 817776
科研通“疑难数据库(出版商)”最低求助积分说明 770441