Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:383
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强砖家发布了新的文献求助20
刚刚
忐忑的远望完成签到,获得积分10
1秒前
1秒前
2秒前
芋你呀完成签到,获得积分10
3秒前
科研通AI2S应助tongttt采纳,获得10
3秒前
3秒前
JamesPei应助正直的笑蓝采纳,获得10
5秒前
5秒前
5秒前
嘿嘿发布了新的文献求助10
5秒前
肉肉发布了新的文献求助10
6秒前
7秒前
yanghuiying完成签到,获得积分20
8秒前
Jasper应助ws采纳,获得10
8秒前
科研通AI6应助甜甜秋荷采纳,获得10
8秒前
心灵美的芙蓉完成签到,获得积分10
8秒前
ylf完成签到,获得积分10
9秒前
小海螺完成签到,获得积分10
10秒前
林新宇发布了新的文献求助10
10秒前
万能图书馆应助晚意采纳,获得10
10秒前
阿洁发布了新的文献求助30
10秒前
LIUDEHUA发布了新的文献求助10
11秒前
laurel完成签到,获得积分10
12秒前
SciGPT应助年轻的听露采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
三皮完成签到,获得积分10
13秒前
13秒前
14秒前
酷波er应助zwl采纳,获得10
14秒前
白木完成签到,获得积分10
14秒前
深情安青应助LIUDEHUA采纳,获得10
15秒前
JamesPei应助午后狂睡采纳,获得10
15秒前
15秒前
焱鑫完成签到,获得积分10
16秒前
852应助甜甜的冷霜采纳,获得10
16秒前
任性的白玉完成签到 ,获得积分10
16秒前
干净冰露发布了新的文献求助10
16秒前
17秒前
yu发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533364
求助须知:如何正确求助?哪些是违规求助? 4621655
关于积分的说明 14579741
捐赠科研通 4561776
什么是DOI,文献DOI怎么找? 2499572
邀请新用户注册赠送积分活动 1479321
关于科研通互助平台的介绍 1450522