Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data

功能连接 支持向量机 模式识别(心理学) 自闭症 人工智能 计算机科学 心理学 神经科学 发展心理学
作者
Canhua Wang,Zhiyong Xiao,Jianhua Wu
出处
期刊:Physica Medica [Elsevier BV]
卷期号:65: 99-105 被引量:105
标识
DOI:10.1016/j.ejmp.2019.08.010
摘要

Considering the unsatisfactory classification accuracy of autism due to unsuitable features selected in current studies, a functional connectivity (FC)-based algorithm for classifying autism and control using support vector machine-recursive feature elimination (SVM-RFE) is proposed in this paper. The goal is to find the optimal features based on FC and improve the classification accuracy on a large sample of data. We chose 35 regions of interest based on the social motivation hypothesis to construct the FC matrix and searched for informative features in the complex high-dimensional FC dataset by the SVM-RFE with a stratified-4-fold cross-validation strategy. The selected features were then entered into an SVM with a Gaussian kernel for classification. A total of 255 subjects with autism and 276 subjects with typical development from 10 sites were involved in the study. For the data of global sites, the proposed classification algorithm could identify the two groups with an accuracy of 90.60% (sensitivity 90.62%, specificity 90.58%). For the leave-one-site-out test, the proposed algorithm achieved a classification accuracy of 75.00%-95.23% for data from different sites. These promising results demonstrate that the proposed classification algorithm performs better than those in recent similar studies in that the importance of features can be measured accurately and only the most discriminative feature subset is selected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真之桃发布了新的文献求助10
刚刚
jeonghan发布了新的文献求助10
刚刚
謃河鷺起完成签到,获得积分10
刚刚
1秒前
jeremy发布了新的文献求助10
2秒前
受伤书文完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
房靳发布了新的文献求助10
4秒前
潘铭惠完成签到,获得积分10
5秒前
HEIKU举报郑俊青求助涉嫌违规
5秒前
5秒前
5秒前
科研通AI5应助和路雪采纳,获得10
6秒前
6秒前
木木发布了新的文献求助10
7秒前
成就的菀发布了新的文献求助10
7秒前
smile完成签到,获得积分10
7秒前
8秒前
8秒前
蘑菇点点发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助zzz采纳,获得10
9秒前
10秒前
CMCM发布了新的文献求助10
11秒前
11秒前
abcdefg发布了新的文献求助10
11秒前
叶成帷发布了新的文献求助10
11秒前
myduty发布了新的文献求助10
12秒前
qzxwsa发布了新的文献求助10
12秒前
赘婿应助jeremy采纳,获得10
13秒前
B哥完成签到,获得积分10
14秒前
张小北发布了新的文献求助10
15秒前
Sunday1992完成签到,获得积分10
15秒前
xhd2814完成签到,获得积分20
16秒前
16秒前
lichaoyes完成签到,获得积分10
18秒前
NexusExplorer应助LHP采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815084
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10399973
捐赠科研通 3076659
什么是DOI,文献DOI怎么找? 1689963
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642