亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applying Machine Learning Techniques to Advance Anti-Doping

运动员 兴奋剂 计算机科学 人工智能 风险分析(工程) 机器学习 医学 物理疗法 材料科学 光电子学
作者
Tyler L. Kelly,Adam W. Beharry,Matthew Fedoruk
出处
期刊:European Journal of Sports & Exercise Science 卷期号:7 (2): 1-9 被引量:4
摘要

Globally exists an ongoing battle between increasingly advanced doping methods and limited resources available to anti-doping organizations. Therefore, the developments of new tools for identifying athletes who may be doping are needed. Recognizing which athletes are at the highest risk of doping allows an anti-doping organization to distribute those limited resources in the most effective manner. Presented below is a comparison of multiple machines and statistical learning approaches, combined with resampling techniques, to identify which athletes are at the highest risk of doping. The results presented indicate that support vector classification and logistic regression, combined with oversampling, may provide an effective tool to aid anti-doping organizations in most effectively distributing scarce resources. Adoption and implementation of these methods may both enhance the deterrence effect of anti-doping, as well as increases the likelihood of catching athletes doping. Future research should be conducted to explore the feasibility of combining these performance-based measures with biological measures such as the Athlete Biological Passport to enhance anti-doping efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
GGGrigor完成签到,获得积分0
16秒前
木昆完成签到 ,获得积分10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
bkagyin应助火星人采纳,获得10
1分钟前
1分钟前
火星人发布了新的文献求助10
2分钟前
2分钟前
2分钟前
缥缈雯发布了新的文献求助10
2分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
CodeCraft应助池雨采纳,获得10
3分钟前
gexzygg应助缥缈雯采纳,获得10
3分钟前
3分钟前
3分钟前
tyr001完成签到,获得积分10
3分钟前
akiyy发布了新的文献求助10
3分钟前
3分钟前
akiyy完成签到,获得积分10
3分钟前
3分钟前
池雨发布了新的文献求助10
3分钟前
tyr001发布了新的文献求助10
3分钟前
赘婿应助黎子酱采纳,获得10
4分钟前
万邦德完成签到,获得积分10
4分钟前
Emma完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634874
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512