Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia

环境科学 蒸散量 农业 随机森林 均方误差 中分辨率成像光谱仪 遥感 卫星 计算机科学 地理 统计 机器学习 数学 生态学 工程类 生物 航空航天工程 考古
作者
Puyu Feng,Bin Wang,De Li Liu,Qiang Yu
出处
期刊:Agricultural Systems [Elsevier]
卷期号:173: 303-316 被引量:222
标识
DOI:10.1016/j.agsy.2019.03.015
摘要

Agricultural drought is a natural hazard arising from insufficient crop water supply. Many drought indices have been developed to characterize agricultural drought, relying on either ground-based climate data or various remotely-sensed drought proxies. Ground-based drought indices are more accurate but limited in coverage, while remote sensing drought indices cover large areas but have poor precision. Application of advanced data fusion approaches based on remotely-sensed data to estimate ground-based drought indices may help fill this gap. The overall objective of this study was to determine whether various remotely-sensed drought factors could be effectively used for monitoring agricultural drought in south-eastern Australia. In this study, thirty remotely-sensed drought factors from the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors were used to reproduce a ground-based drought index, SPEI (Standardized Precipitation Evapotranspiration Index) during 2001–2017 for the New South Wales wheat belt in south-eastern Australia. Three advanced machine learning methods, i.e. bias-corrected random forest, support vector machine, and multi-layer perceptron neural network, were adopted as the regression models in this procedure. A station-based historical climate dataset and observed wheat yields were used as reference data to evaluate the performance of the model-predicted SPEI in reflecting agricultural drought. Results show that the bias-corrected random forest model outperformed the other two models for SPEI prediction, as quantified by the lowest root mean square error (RMSE) and the highest R2 values (<0.28 and ~0.9, respectively). Drought distribution maps produced by the bias-corrected random forest model were then compared with the station-based drought maps, showing strong visual and statistical agreement. Furthermore, the model-predicted SPEI values were more highly correlated with observed wheat yields than the station-based SPEI. The method used in this study is effective and fast, and based on data that are readily available. It can be easily extended to other cropping areas to produce a rapid overview of drought conditions and to enhance the present capabilities of real-time drought monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心蜜粉发布了新的文献求助10
刚刚
研友_EZ1aNZ完成签到,获得积分20
1秒前
粗暴的鱼发布了新的文献求助10
3秒前
3秒前
4秒前
科研通AI6应助ZLQ采纳,获得10
7秒前
7秒前
丁春秋发布了新的文献求助10
9秒前
hht发布了新的文献求助10
9秒前
有血条就敢上完成签到 ,获得积分10
10秒前
杨明智完成签到 ,获得积分10
10秒前
Vi发布了新的文献求助10
11秒前
YONG完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
16秒前
AAA建材批发原哥完成签到,获得积分10
16秒前
16秒前
帮帮我完成签到 ,获得积分10
17秒前
桐桐应助小白采纳,获得10
17秒前
维奈克拉应助Vi采纳,获得20
18秒前
18秒前
YONG关注了科研通微信公众号
20秒前
123发布了新的文献求助30
20秒前
20秒前
21秒前
Lvy完成签到,获得积分10
21秒前
qingfengnai完成签到,获得积分10
21秒前
玛琪玛小姐的狗完成签到,获得积分10
21秒前
坦率迎海zzh完成签到,获得积分10
21秒前
hqh发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
Jemmy发布了新的文献求助10
23秒前
23秒前
doc.level完成签到,获得积分10
24秒前
24秒前
TJJJJJ完成签到,获得积分10
25秒前
苹果易真发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630382
求助须知:如何正确求助?哪些是违规求助? 4722421
关于积分的说明 14973398
捐赠科研通 4788579
什么是DOI,文献DOI怎么找? 2556999
邀请新用户注册赠送积分活动 1517960
关于科研通互助平台的介绍 1478553