Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video)

医学 静脉曲张 食管胃十二指肠镜检查 食管静脉曲张 胃静脉曲张 内科学 胃肠病学 食管 肝硬化 放射科 内窥镜检查 门脉高压
作者
Mingkai Chen,Jing Wang,Yong Xiao,Lianlian Wu,Shan Hu,Shi Chen,Guo-Dong YI,Wei Hu,Xianmu Xie,Yijie Zhu,Yiyun Chen,Yanning Yang,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:93 (2): 422-432.e3 被引量:29
标识
DOI:10.1016/j.gie.2020.06.058
摘要

Background and Aims Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. Methods After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. Results ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Conclusions Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.) Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shengch0234完成签到,获得积分10
1秒前
挽风完成签到 ,获得积分10
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
JMchiefEditor完成签到,获得积分10
4秒前
上官若男应助lwy采纳,获得10
4秒前
sqz_df发布了新的文献求助10
4秒前
汉堡包应助111采纳,获得10
5秒前
5秒前
kk发布了新的文献求助30
5秒前
LYY完成签到,获得积分10
6秒前
科研通AI2S应助严yee采纳,获得10
6秒前
竹林清风完成签到,获得积分10
7秒前
8秒前
语音助手完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
135完成签到 ,获得积分10
10秒前
LGS发布了新的文献求助10
11秒前
ZHANG完成签到,获得积分10
11秒前
一日不看书智商输给猪完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
降噪铅笔完成签到 ,获得积分10
13秒前
烟花应助ldy采纳,获得10
13秒前
txco发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
和谐夕阳完成签到,获得积分10
16秒前
飞快的尔容完成签到,获得积分10
17秒前
Yuanyuan发布了新的文献求助10
17秒前
打打应助mo采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467