亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study

计算机科学 管道(软件) 自然语言处理 人工智能 本体论 非结构化数据 信息抽取 多样性(控制论) 解析 机器学习 情报检索 个性化 大数据 万维网 数据挖掘 哲学 认识论 程序设计语言
作者
Syed-Amad Hussain,Emre Sezgın,Katelyn Krivchenia,John Luna,Steve Rust,Yungui Huang
出处
期刊:JAMIA open [University of Oxford]
卷期号:4 (3) 被引量:9
标识
DOI:10.1093/jamiaopen/ooab084
摘要

Patient-generated health data (PGHD) are important for tracking and monitoring out of clinic health events and supporting shared clinical decisions. Unstructured text as PGHD (eg, medical diary notes and transcriptions) may encapsulate rich information through narratives which can be critical to better understand a patient's condition. We propose a natural language processing (NLP) supported data synthesis pipeline for unstructured PGHD, focusing on children with special healthcare needs (CSHCN), and demonstrate it with a case study on cystic fibrosis (CF).The proposed unstructured data synthesis and information extraction pipeline extract a broad range of health information by combining rule-based approaches with pretrained deep-learning models. Particularly, we build upon the scispaCy biomedical model suite, leveraging its named entity recognition capabilities to identify and link clinically relevant entities to established ontologies such as Systematized Nomenclature of Medicine (SNOMED) and RXNORM. We then use scispaCy's syntax (grammar) parsing tools to retrieve phrases associated with the entities in medication, dose, therapies, symptoms, bowel movements, and nutrition ontological categories. The pipeline is illustrated and tested with simulated CF patient notes.The proposed hybrid deep-learning rule-based approach can operate over a variety of natural language note types and allow customization for a given patient or cohort. Viable information was successfully extracted from simulated CF notes. This hybrid pipeline is robust to misspellings and varied word representations and can be tailored to accommodate the needs of a specific patient, cohort, or clinician.The NLP pipeline can extract predefined or ontology-based entities from free-text PGHD, aiming to facilitate remote care and improve chronic disease management. Our implementation makes use of open source models, allowing for this solution to be easily replicated and integrated in different health systems. Outside of the clinic, the use of the NLP pipeline may increase the amount of clinical data recorded by families of CSHCN and ease the process to identify health events from the notes. Similarly, care coordinators, nurses and clinicians would be able to track adherence with medications, identify symptoms, and effectively intervene to improve clinical care. Furthermore, visualization tools can be applied to digest the structured data produced by the pipeline in support of the decision-making process for a patient, caregiver, or provider.Our study demonstrated that an NLP pipeline can be used to create an automated analysis and reporting mechanism for unstructured PGHD. Further studies are suggested with real-world data to assess pipeline performance and further implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌小石完成签到 ,获得积分10
18秒前
QQ发布了新的文献求助10
20秒前
QQ完成签到,获得积分20
34秒前
激动的似狮完成签到,获得积分10
49秒前
55秒前
___淡完成签到 ,获得积分10
1分钟前
领导范儿应助yyg采纳,获得10
1分钟前
JavedAli完成签到,获得积分10
1分钟前
1分钟前
俭朴的元绿完成签到 ,获得积分10
1分钟前
yyg发布了新的文献求助10
1分钟前
小孟吖完成签到 ,获得积分10
2分钟前
Xx完成签到 ,获得积分10
2分钟前
小宋发布了新的文献求助10
2分钟前
科研通AI5应助lll采纳,获得10
3分钟前
3分钟前
lll完成签到,获得积分10
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
lll发布了新的文献求助10
3分钟前
科研通AI5应助yyg采纳,获得10
3分钟前
3分钟前
3分钟前
yyg发布了新的文献求助10
3分钟前
甜甜的以筠完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
elena发布了新的文献求助10
5分钟前
充电宝应助yyg采纳,获得10
5分钟前
果汁儿完成签到 ,获得积分10
5分钟前
yile完成签到 ,获得积分10
6分钟前
blue完成签到 ,获得积分10
6分钟前
6分钟前
yyg发布了新的文献求助10
6分钟前
7分钟前
传奇3应助科研通管家采纳,获得10
7分钟前
zzgpku完成签到,获得积分0
7分钟前
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779106
求助须知:如何正确求助?哪些是违规求助? 3324748
关于积分的说明 10219794
捐赠科研通 3039855
什么是DOI,文献DOI怎么找? 1668452
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503