Physics-Based Trench-Gate Field-Stop IGBT Modeling With Optimization-Based Parameter Extraction for Device Parameters

绝缘栅双极晶体管 电容 电子工程 有限元法 寄生提取 解算器 沟槽 电气工程 工程类 计算机科学 材料科学 电压 物理 结构工程 图层(电子) 电极 量子力学 复合材料 程序设计语言
作者
Yifei Ding,Xin Yang,Guoyou Liu,Jun Wang
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:68 (12): 6305-6312 被引量:17
标识
DOI:10.1109/ted.2021.3120691
摘要

As a classical insulated gate bipolar transistor (IGBT) structure, the trench-gate field-stop (FS) IGBT has been widely used. For more convenient application, physics-based trench-gate FS IGBT models have received great attentions due to its effectiveness in simulating key device properties. However, current IGBT modeling studies for this popular IGBT chip seldom investigate the depletion layer behavior under the trench-gate structure. This article first derives the physics-based miller capacitance formula for the trench-gate structure according to finite element method (FEM) simulation. Another haunting issue for these physics-based IGBT models is that the intrinsic device parameters are difficult to be extracted appropriately. Thus, an FEM FS IGBT model is established in Sentaurus TCAD as the benchmark. Then, an improved parameter extraction procedure for a Fourier-series-based (FSB) IGBT model is proposed based on the improved miller capacitance formula. By the particle swarm optimization algorithm, key device parameters for the FSB IGBT model can be successfully extracted by fitting the simulated waveforms to those by FEM simulation at a randomly selected turn-off operating condition. Parameters extracted through the proposed procedure using the FSB IGBT model with the improved miller capacitance formula are very close to the device parameters of the FEM model. More importantly, the reliability and the robustness of the extracted parameters are further validated by comparing the waveforms of FSB model with those of FEM model at different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玩命做科研完成签到 ,获得积分10
刚刚
害怕的路灯完成签到,获得积分10
刚刚
lxrong发布了新的文献求助10
刚刚
浅笑完成签到,获得积分10
刚刚
刚刚
刚刚
疯狂老马完成签到,获得积分10
1秒前
1秒前
1秒前
万能图书馆应助12采纳,获得10
1秒前
鲲kun发布了新的文献求助10
1秒前
123完成签到 ,获得积分10
2秒前
2秒前
2秒前
simon发布了新的文献求助10
2秒前
3秒前
3秒前
yannis2020发布了新的文献求助10
3秒前
小号完成签到,获得积分10
3秒前
歪比八不完成签到,获得积分20
3秒前
ludwig完成签到,获得积分10
4秒前
universe完成签到,获得积分10
4秒前
迷路雨寒发布了新的文献求助10
4秒前
乐乐应助dong采纳,获得10
4秒前
5秒前
蛋黄啵啵完成签到 ,获得积分10
5秒前
5秒前
5秒前
小h发布了新的文献求助10
6秒前
gtpking发布了新的文献求助10
6秒前
星星完成签到,获得积分10
6秒前
科研通AI6应助fufu采纳,获得10
7秒前
小蘑菇应助狄从灵采纳,获得10
8秒前
9秒前
科研通AI2S应助尊敬的灰狼采纳,获得10
9秒前
9秒前
WKJiang发布了新的文献求助10
9秒前
liusx123完成签到,获得积分10
9秒前
zyc发布了新的文献求助10
10秒前
傲寒完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625501
求助须知:如何正确求助?哪些是违规求助? 4711310
关于积分的说明 14955098
捐赠科研通 4779405
什么是DOI,文献DOI怎么找? 2553744
邀请新用户注册赠送积分活动 1515680
关于科研通互助平台的介绍 1475870