An AI-powered Smart Routing Solution for Payment Systems

付款 计算机科学 布线(电子设计自动化) 计算机安全 业务 计算机网络 万维网
作者
Ramya Bygari,Aayush Gupta,Shashwat Raghuvanshi,Aakanksha Bapna,Birendra Sahu
标识
DOI:10.1109/bigdata52589.2021.9671961
摘要

In the current era of digitization, online payment systems are attracting considerable interest. Improving the efficiency of a payment system is important since it has a substantial impact on revenues for businesses. A gateway is an integral component of a payment system through which every transaction is routed. In an online payment system, payment processors integrate with these gateways by means of various configurations such as pricing, methods, risk checks, etc. These configurations are called terminals. Each gateway can have multiple terminals associated with it. Routing a payment transaction through the best terminal is crucial to increase the probability of a payment transaction being successful. Machine learning (ML) and artificial intelligence (AI) techniques can be used to accurately predict the best terminals based on their previous performance and various payment-related attributes. We have devised a pipeline consisting of static and dynamic modules. The static module does the initial filtering of the terminals using static rules and a logistic regression model that predicts gateway downtimes. Subsequently, the dynamic module computes a lot of novel features based on success rate, payment attributes, time lag, etc. to model the terminal behaviour accurately. These features are updated using an adaptive time decay rate algorithm in real-time using a feedback loop and passed to a random forest classifier to predict the success probabilities for every terminal. This pipeline is currently in production at Razorpay routing millions of transactions through it in real-time and has given a 4-6\% improvement in success rate across all payment methods (credit card, debit card, UPI, net banking). This has made our payment system more resilient to performance drops, which has improved the user experience, instilled more trust in the merchants, and boosted the revenue of the business.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨沛儒发布了新的文献求助10
刚刚
打打应助skyler采纳,获得10
1秒前
哈哈完成签到,获得积分20
2秒前
taimeili完成签到,获得积分10
3秒前
3秒前
Owen应助梦璃采纳,获得10
3秒前
4秒前
洛尘完成签到,获得积分10
4秒前
精明笑蓝发布了新的文献求助10
4秒前
4秒前
科研通AI6应助隐形的大米采纳,获得10
4秒前
FashionBoy应助迅速茹嫣采纳,获得10
4秒前
谦让的仇血完成签到,获得积分10
5秒前
小乔发布了新的文献求助10
5秒前
railway7777完成签到,获得积分10
7秒前
梅者如西发布了新的文献求助10
8秒前
8秒前
orixero应助SaqLa采纳,获得10
9秒前
充电宝应助koi采纳,获得10
9秒前
顾矜应助杨沛儒采纳,获得10
9秒前
灰色头像完成签到,获得积分10
9秒前
来碗豆腐完成签到,获得积分10
9秒前
qpp完成签到,获得积分10
10秒前
高兴之云完成签到,获得积分20
10秒前
123567发布了新的文献求助10
10秒前
10秒前
大胆绮兰发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
他二舅flying完成签到,获得积分10
13秒前
www完成签到,获得积分10
14秒前
小蘑菇发布了新的文献求助20
14秒前
酷波er应助周胜采纳,获得10
15秒前
15秒前
Dominator完成签到,获得积分10
16秒前
情怀应助Hui_2023采纳,获得10
16秒前
zeta发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641522
求助须知:如何正确求助?哪些是违规求助? 4756616
关于积分的说明 15013302
捐赠科研通 4799919
什么是DOI,文献DOI怎么找? 2565664
邀请新用户注册赠送积分活动 1523936
关于科研通互助平台的介绍 1483558