亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma

医学 无线电技术 队列 肝细胞癌 比例危险模型 接收机工作特性 放射科 阶段(地层学) 放射性武器 危险系数 肿瘤科 人工智能 内科学 置信区间 计算机科学 古生物学 生物
作者
Yuhan Yang,Yin Zhou,Chen Zhou,Xuelei Ma
出处
期刊:Ejso [Elsevier BV]
卷期号:48 (5): 1068-1077 被引量:35
标识
DOI:10.1016/j.ejso.2021.11.120
摘要

To evaluate the performance of a deep learning (DL)-based radiomics strategy on contrast-enhanced computed tomography (CT) to predict microvascular invasion (MVI) status and clinical outcomes, recurrence-free survival (RFS) and overall survival (OS) in patients with early stage hepatocellular carcinoma (HCC) receiving surgical resection.All 283 eligible patients were included retrospectively between January 2008 and December 2015, and assigned into the training cohort (n = 198) and the testing cohort (n = 85). We extracted radiomics features via handcrafted radiomics analysis manually and DL analysis of pretrained convolutional neural networks via transfer learning automatically. Support vector machine was adopted as the classifier. A clinical-radiological model for MVI status integrated significant clinical features and the radiological signature generated from the radiological model with the optimal area under the receiver operating characteristics curve (AUC) in the testing cohort. Otherwise, DL-based prognostic models were constructed in prediction of recurrence and mortality via Cox proportional hazard analysis.The clinical-radiological model for MVI represented an AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%, positive predictive value of 83.33%, and negative predictive value of 98.63% in the testing cohort. The clinical-radiological models for identification of RFS and OS outperformed prediction performance of the clinical model or the DL signature alone. The DL-based integrated model for prognostication showed great predictive value with significant classification and discrimination abilities after validation.The integrated DL-based radiomics models achieved accurate preoperative prediction of MVI status, and might facilitate predicting tumor recurrence and mortality in order to optimize clinical decisions for patients with early stage HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zm完成签到,获得积分10
18秒前
54秒前
getgetting发布了新的文献求助10
59秒前
1分钟前
zzzjh发布了新的文献求助10
1分钟前
小吴发布了新的文献求助10
1分钟前
今后应助zzzjh采纳,获得10
1分钟前
1分钟前
zoey发布了新的文献求助10
1分钟前
搜集达人应助zoey采纳,获得10
1分钟前
Li应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
h0jian09完成签到,获得积分10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
不胜玖完成签到 ,获得积分10
4分钟前
清秀灵薇完成签到,获得积分10
4分钟前
一只榴莲发布了新的文献求助10
4分钟前
4分钟前
搜集达人应助一只榴莲采纳,获得10
4分钟前
5分钟前
zzzjh发布了新的文献求助10
5分钟前
11发布了新的文献求助10
5分钟前
11完成签到,获得积分10
5分钟前
kkk完成签到 ,获得积分10
5分钟前
辛勤夜柳发布了新的文献求助30
5分钟前
英姑应助苏打采纳,获得10
5分钟前
5分钟前
ljz发布了新的文献求助10
5分钟前
Li应助科研通管家采纳,获得10
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
Li应助科研通管家采纳,获得10
5分钟前
5分钟前
绝尘发布了新的文献求助10
5分钟前
5分钟前
欣欣发布了新的文献求助10
6分钟前
6分钟前
一只榴莲发布了新的文献求助10
6分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329326
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714