化学
铱
氧化剂
无机化学
析氧
无定形固体
锂(药物)
电解
金红石
催化作用
纳米晶材料
电解水
碱金属
过渡金属
化学工程
电化学
电极
电解质
医学
有机化学
物理化学
工程类
结晶学
内分泌学
作者
Jonathan Ruiz Esquius,David Morgan,Gerardo Algara Siller,Diego Gianolio,Matteo Aramini,Leopold Lahn,Olga Kasian,Simon A. Kondrat,Robert Schlögl,Graham J. Hutchings,Rosa Arrigo,Simon J. Freakley
摘要
The oxygen evolution reaction (OER) is crucial to future energy systems based on water electrolysis. Iridium oxides are promising catalysts due to their resistance to corrosion under acidic and oxidizing conditions. Highly active iridium (oxy)hydroxides prepared using alkali metal bases transform into low activity rutile IrO2 at elevated temperatures (>350 °C) during catalyst/electrode preparation. Depending on the residual amount of alkali metals, we now show that this transformation can result in either rutile IrO2 or nano-crystalline Li-intercalated IrOx. While the transition to rutile results in poor activity, the Li-intercalated IrOx has comparative activity and improved stability when compared to the highly active amorphous material despite being treated at 500 °C. This highly active nanocrystalline form of lithium iridate could be more resistant to industrial procedures to produce PEM membranes and provide a route to stabilize the high populations of redox active sites of amorphous iridium (oxy)hydroxides.
科研通智能强力驱动
Strongly Powered by AbleSci AI