A mesh cladding-structured Sr-doped LaFeO3/Bi4O5Br2 photocatalyst: Integration of oxygen vacancies and Z-scheme heterojunction toward enhanced CO2 photoreduction

材料科学 异质结 光催化 兴奋剂 吸附 包层(金属加工) X射线光电子能谱 光电子学 氧化物 纳米技术 化学工程 催化作用 化学 复合材料 物理化学 冶金 工程类 生物化学
作者
Zhuohong Xie,Woncheol Seo,Syed Taj Ud Din,Hankyu Lee,Changchang Ma,Woochul Yang
出处
期刊:Materials Today Energy [Elsevier BV]
卷期号:33: 101265-101265 被引量:12
标识
DOI:10.1016/j.mtener.2023.101265
摘要

Solar-driven conversion of CO2 into beneficial chemical fuels using photocatalysts is a sustainable approach for obtaining renewable energy. However, the poor photoabsorption, low charge separation efficiency, and sluggish interfacial reaction due to a paucity of active sites limit the photocatalytic activity. Herein, a mesh cladding structure of Sr-doped LaFeO3/Bi4O5Br2 (Sr-LFO/BOB) Z-scheme heterojunction with abundant surface oxygen vacancies (OVs) is developed to improve the CO2 photoreduction. Sr doping in LFO introduce OVs, which captures more photoinduced electrons contributing to the surface adsorption of CO2 molecules and narrows the LFO band gap extending the light absorption range to the whole visible spectrum. Particularly, the unique mesh cladding heterostructure composed of Sr-LFO particles wrapped with BOB nanowires provides ample Z-scheme charge-transfer pathways at the Sr-LFO/BOB and sufficiently exposes Sr-LFO surface for CO2 adsorption. Benefiting from the OVs and design of Z-scheme, the optimized photocatalyst (0.05Sr-LFO/BOB(2)) with appropriate Sr doping (5%) and BOB content demonstrates a considerable CH4 generation of 10.14 μmol g−1, which is approximately 48.3-fold higher than that of the pristine LFO. This study provides an insight into the design and fabrication of high-performance perovskite oxide-based photocatalysts by constructing a Z-scheme heterojunction with abundant active sites for CO2 photoreduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8R60d8应助拉长的诗蕊采纳,获得10
1秒前
fhlwft完成签到,获得积分10
1秒前
泡泡完成签到,获得积分10
2秒前
菘蓝关注了科研通微信公众号
2秒前
尊敬灵萱发布了新的文献求助10
3秒前
3秒前
薇子完成签到,获得积分10
3秒前
共享精神应助陈陈采纳,获得10
3秒前
慢慢发布了新的文献求助30
4秒前
长夜变清早完成签到,获得积分10
4秒前
登登完成签到,获得积分10
4秒前
汉堡包应助负责念梦采纳,获得10
4秒前
bdsb完成签到,获得积分10
5秒前
Akim应助失眠的平凡采纳,获得10
5秒前
坤坤蹦蹦跳跳完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
跳跃飞薇完成签到 ,获得积分10
6秒前
大个应助勤奋花瓣采纳,获得10
6秒前
7秒前
xuzj完成签到,获得积分10
7秒前
lian完成签到,获得积分20
7秒前
wanci应助cc采纳,获得10
7秒前
美好的凌晴完成签到,获得积分10
7秒前
奋斗向日葵完成签到,获得积分20
8秒前
天黑不打烊应助徐矜采纳,获得20
9秒前
无情的保温杯完成签到,获得积分20
9秒前
9秒前
9秒前
充电宝应助欢喜的怜菡采纳,获得10
9秒前
OKOK完成签到,获得积分10
9秒前
10秒前
潘强炫发布了新的文献求助10
10秒前
10秒前
可爱的函函应助zmm采纳,获得10
10秒前
科研通AI5应助追寻思远采纳,获得10
10秒前
核桃发布了新的文献求助30
11秒前
北辰发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
聚丙烯腈纤维的辐射交联及对预氧化的影响 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910881
求助须知:如何正确求助?哪些是违规求助? 3456542
关于积分的说明 10890249
捐赠科研通 3182836
什么是DOI,文献DOI怎么找? 1759359
邀请新用户注册赠送积分活动 850855
科研通“疑难数据库(出版商)”最低求助积分说明 792293