亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm

反向 壳体(结构) 遗传算法 计算机科学 算法 超材料 结构工程 几何学 数学 机械工程 数学优化 工程类 光学 物理
作者
Yongzhen Wang,Qinglei Zeng,Jizhen Wang,Ying Li,Daining Fang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:401: 115571-115571 被引量:96
标识
DOI:10.1016/j.cma.2022.115571
摘要

Triply periodic minimal surfaces (TPMSs) have attracted great attention due to their distinct advantages such as high strength and light weight compared to traditional lattice structures. Most previous works focus on forward prediction of the mechanical behaviors of TPMSs. Inverse design of the configurations based on customized loading curves would be of great value in engineering applications such as energy absorption. Inspired by TPMSs, we propose the concept of the shell-based mechanical metamaterial (SMM) in this work, which possesses the main geometrical features and mechanical properties of TPMSs. A novel approach, combining machine learning (ML) for high efficiency and genetic algorithm (GA) for global optimization, is put forward to inversely design the configuration of SMM. Two strategies are introduced to develop artificial neural networks (ANNs) for the prediction of their loading curves under compression. GA is then employed to design objective configurations with customized loading curves. The connection between the loading curves and deformation modes is also illustrated to demonstrate the values of such inverse design. SMM with a strain-hardening curve tends to exhibit globally uniform deformation, while SMM with a strain-softening curve tends to present layer-by-layer deformation during compression, which is demonstrated by experiments and simulations. This work fills the blanks of inverse design of SMM with customized loading curves and contributes to the concept of structure design combining ML and traditional optimization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助20
5秒前
qq关注了科研通微信公众号
5秒前
21秒前
24秒前
24秒前
30秒前
32秒前
文献求助小达人完成签到,获得积分10
34秒前
Vicky完成签到 ,获得积分10
46秒前
54秒前
54秒前
54秒前
充电宝应助科研通管家采纳,获得10
54秒前
54秒前
54秒前
赘婿应助科研通管家采纳,获得10
54秒前
interesting发布了新的文献求助10
58秒前
1分钟前
1分钟前
万崽秋秋糖完成签到 ,获得积分10
1分钟前
十一苗完成签到 ,获得积分10
1分钟前
1分钟前
interesting完成签到,获得积分10
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
丘比特应助www采纳,获得10
1分钟前
Aliya完成签到 ,获得积分10
1分钟前
1分钟前
烊驼完成签到,获得积分10
1分钟前
蕴蝶发布了新的文献求助10
1分钟前
1分钟前
希望天下0贩的0应助蕴蝶采纳,获得10
1分钟前
1分钟前
活力的以蕊完成签到,获得积分10
2分钟前
遗忘完成签到,获得积分10
2分钟前
2分钟前
大模型应助qq采纳,获得30
2分钟前
lee完成签到 ,获得积分10
2分钟前
士萧完成签到,获得积分10
2分钟前
苏颜鱼发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4341935
求助须知:如何正确求助?哪些是违规求助? 3849906
关于积分的说明 12020411
捐赠科研通 3491213
什么是DOI,文献DOI怎么找? 1915912
邀请新用户注册赠送积分活动 958963
科研通“疑难数据库(出版商)”最低求助积分说明 859083