An Autonomous AI Framework for Knee Osteoarthritis Diagnosis via Semi-Supervised Learning and Dual Knowledge Distillation

对偶(语法数字) 骨关节炎 人工智能 计算机科学 蒸馏 机器学习 模式识别(心理学) 医学 病理 文学类 艺术 有机化学 化学 替代医学
作者
Peng Li,Li Xu,Xiaoding Wang,Lizhao Wu,Jin Liu,Weiquan Zeng,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2025.3585557
摘要

In the diagnosis of knee osteoarthritis, imaging analysis relies on accurate classification models to assess the severity of the disease. Traditional methods often require large amounts of labeled data, which is challenging in many developing countries, especially in resource-limited areas where the scarcity of labeled data becomes a bottleneck due to a lack of medical resources and qualified annotators. Privacy concerns also arise when using high-quality datasets from developed countries. This paper proposes a semi-supervised dual-knowledge distillation framework, PADistillation, that leverages autonomous AI to expand the reach of telemedicine and remote diagnostics while addressing data scarcity and privacy problems. To overcome the challenge of insufficient labeled data, the framework uses attention-guided distillation, employing high-attention pixels and channels to guide the student model's learning, thereby enhancing classification performance with limited labeled data. To ensure patient privacy during training, a personalized pixel shuffling method is proposed, dynamically determining the privacy protection priority of different regions by measuring the visual disorder of image areas. Through autonomous optimization and real-time decision making, PADistillation operates efficiently in resourceconstrained environments and supports telemedicine and remote diagnostic needs. Even with limited labeled data, the experimental results show that PADistillation achieves an accuracy rate of 88.19%, a precision rate of 86.28%, and an F1 score of 86.94%. Compared with the mainstream semi-supervised methods, its accuracy rate is increased by more than 2%, the training efficiency is improved by 30%, and the privacy protection mechanism only leads to a performance loss of 1.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
义气莫茗发布了新的文献求助10
2秒前
Tashi完成签到,获得积分10
3秒前
云在青天水在瓶完成签到,获得积分10
3秒前
苏槑特完成签到,获得积分10
4秒前
5秒前
黑暗与黎明完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
努力生活的小柴完成签到,获得积分10
6秒前
Robin发布了新的文献求助10
6秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
怜雪发布了新的文献求助10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
乐乐应助冷傲奇异果采纳,获得10
7秒前
花满楼发布了新的文献求助10
8秒前
kkkkpoa发布了新的文献求助10
8秒前
羽梨发布了新的文献求助10
13秒前
joiawhrfoiwea发布了新的文献求助10
14秒前
16秒前
大模型应助骤雨红尘采纳,获得10
18秒前
guanguan完成签到,获得积分10
19秒前
倒数第十秒完成签到,获得积分10
21秒前
希望天下0贩的0应助羽梨采纳,获得30
21秒前
21秒前
九零后无心完成签到,获得积分10
22秒前
yori完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
科研通AI6应助xima采纳,获得10
25秒前
smile发布了新的文献求助10
25秒前
醋溜爆肚儿完成签到,获得积分10
26秒前
ok完成签到,获得积分10
27秒前
27秒前
galaxy发布了新的文献求助10
27秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231596
求助须知:如何正确求助?哪些是违规求助? 3764977
关于积分的说明 11830407
捐赠科研通 3423970
什么是DOI,文献DOI怎么找? 1878982
邀请新用户注册赠送积分活动 931915
科研通“疑难数据库(出版商)”最低求助积分说明 839431