亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Autonomous AI Framework for Knee Osteoarthritis Diagnosis via Semi-Supervised Learning and Dual Knowledge Distillation

对偶(语法数字) 骨关节炎 人工智能 计算机科学 蒸馏 机器学习 模式识别(心理学) 医学 病理 文学类 艺术 有机化学 化学 替代医学
作者
Peng Li,Li Xu,Xiaoding Wang,Lizhao Wu,Jin Liu,Weiquan Zeng,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2025.3585557
摘要

In the diagnosis of knee osteoarthritis, imaging analysis relies on accurate classification models to assess the severity of the disease. Traditional methods often require large amounts of labeled data, which is challenging in many developing countries, especially in resource-limited areas where the scarcity of labeled data becomes a bottleneck due to a lack of medical resources and qualified annotators. Privacy concerns also arise when using high-quality datasets from developed countries. This paper proposes a semi-supervised dual-knowledge distillation framework, PADistillation, that leverages autonomous AI to expand the reach of telemedicine and remote diagnostics while addressing data scarcity and privacy problems. To overcome the challenge of insufficient labeled data, the framework uses attention-guided distillation, employing high-attention pixels and channels to guide the student model's learning, thereby enhancing classification performance with limited labeled data. To ensure patient privacy during training, a personalized pixel shuffling method is proposed, dynamically determining the privacy protection priority of different regions by measuring the visual disorder of image areas. Through autonomous optimization and real-time decision making, PADistillation operates efficiently in resourceconstrained environments and supports telemedicine and remote diagnostic needs. Even with limited labeled data, the experimental results show that PADistillation achieves an accuracy rate of 88.19%, a precision rate of 86.28%, and an F1 score of 86.94%. Compared with the mainstream semi-supervised methods, its accuracy rate is increased by more than 2%, the training efficiency is improved by 30%, and the privacy protection mechanism only leads to a performance loss of 1.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clementine发布了新的文献求助10
7秒前
leicaixia完成签到 ,获得积分10
8秒前
10秒前
16秒前
敌敌畏完成签到,获得积分10
24秒前
123完成签到,获得积分10
29秒前
30秒前
32秒前
Criminology34应助123采纳,获得10
33秒前
38秒前
悠悠我心发布了新的文献求助10
38秒前
今后应助活力的三娘采纳,获得10
38秒前
41秒前
留胡子的不弱完成签到 ,获得积分10
42秒前
蛋仔发布了新的文献求助30
44秒前
Adc应助研0种牛马采纳,获得10
45秒前
46秒前
不秃头发布了新的文献求助10
47秒前
开朗嘉熙完成签到 ,获得积分10
51秒前
Otter完成签到,获得积分10
52秒前
54秒前
Lea完成签到 ,获得积分10
55秒前
57秒前
1分钟前
1分钟前
整齐半青完成签到 ,获得积分10
1分钟前
Yaon-Xu完成签到,获得积分10
1分钟前
烂漫的芫完成签到 ,获得积分10
1分钟前
1分钟前
包容的硬币应助cy采纳,获得10
1分钟前
寻道图强应助张向向采纳,获得30
1分钟前
华仔应助myself0011采纳,获得10
1分钟前
deng203完成签到,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714244
求助须知:如何正确求助?哪些是违规求助? 5222163
关于积分的说明 15273002
捐赠科研通 4865715
什么是DOI,文献DOI怎么找? 2612323
邀请新用户注册赠送积分活动 1562451
关于科研通互助平台的介绍 1519674