碲
基因
生物
遗传学
细菌
基因组
水平基因转移
质粒
微生物学
化学
无机化学
作者
Linda Darwiche,Jennifer L. Goff
标识
DOI:10.1080/1040841x.2025.2555936
摘要
The metalloid tellurium (Te) is toxic to bacteria; however, the element is also extremely rare. Thus, most bacteria will never encounter Te in their environment. Nonetheless significant research has been performed on bacterial Te resistance because of the medical applications of the element. The so-called "tellurium resistance (TeR) genes" were first described on plasmids isolated from clinically relevant Enterobacteriaceae. With time, it has become apparent that, given the rarity of Te on the planet, these genes may have functions beyond tellurium resistance. Nonetheless, the description of these genes as "tellurium resistance genes" has persisted. In this review, we first examine the history and discovery of the TeR genes. We then performed an analysis of 184,000 high-quality, prokaryotic (meta)genomes, which revealed that terZABCDF, telA, and tehAB are relatively common in genome annotations and that they are frequently described as "tellurium resistance genes". We synthesized the literature to describe the functions of these ubiquitous genes beyond tellurium resistance. These genes have functions in diverse cellular processes including phage resistance, antibiotic resistance, virulence, oxidative stress resistance, cell cycle regulation, metal resistance, and metalation of exoenzymes. Considering this analysis, we propose that it is time to appreciate the multifunctional nature of the "tellurium resistance genes".
科研通智能强力驱动
Strongly Powered by AbleSci AI