Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss

前列腺癌 掷骰子 Sørensen–骰子系数 分割 卷积神经网络 背景(考古学) 人工智能 前列腺 计算机科学 深度学习 模式识别(心理学) 人工神经网络 核医学 医学 图像分割 癌症 内科学 数学 古生物学 几何学 生物
作者
Yixi Xu,Ivan S. Klyuzhin,Sara Harsini,Anthony Ortiz,Shun Zhang,François Bénard,Rahul Dodhia,Carlos Uribe,Arman Rahmim,Juan Lavista Ferres
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106882-106882 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.106882
摘要

Automatic and accurate segmentation of lesions in images of metastatic castration-resistant prostate cancer has the potential to enable personalized radiopharmaceutical therapy and advanced treatment response monitoring. The aim of this study is to develop a convolutional neural networks-based framework for fully-automated detection and segmentation of metastatic prostate cancer lesions in whole-body PET/CT images. 525 whole-body PET/CT images of patients with metastatic prostate cancer were available for the study, acquired with the [18F]DCFPyL radiotracer that targets prostate-specific membrane antigen (PSMA). U-Net (1)-based convolutional neural networks (CNNs) were trained to identify lesions on paired axial PET/CT slices. Baseline models were trained using batch-wise dice loss, as well as the proposed weighted batch-wise dice loss (wDice), and the lesion detection performance was quantified, with a particular emphasis on lesion size, intensity, and location. We used 418 images for model training, 30 for model validation, and 77 for model testing. In addition, we allowed our model to take n = 0,2, …, 12 neighboring axial slices to examine how incorporating greater amounts of 3D context influences model performance. We selected the optimal number of neighboring axial slices that maximized the detection rate on the 30 validation images, and trained five neural networks with different architectures. Model performance was evaluated using the detection rate, Dice similarity coefficient (DSC) and sensitivity. We found that the proposed wDice loss significantly improved the lesion detection rate, lesion-wise DSC and lesion-wise sensitivity compared to the baseline, with corresponding average increases of 0.07 (p-value = 0.01), 0.03 (p-value = 0.01) and 0.04 (p-value = 0.01), respectively. The inclusion of the first two neighboring axial slices in the input likewise increased the detection rate by 0.17, lesion-wise DSC by 0.05, and lesion-wise mean sensitivity by 0.16. However, there was a minimal effect from including more distant neighboring slices. We ultimately chose to use a number of neighboring slices equal to 2 and the wDice loss function to train our final model. To evaluate the model's performance, we trained three models using identical hyperparameters on three different data splits. The results showed that, on average, the model was able to detect 80% of all testing lesions, with a detection rate of 93% for lesions with maximum standardized uptake values (SUVmax) greater than 5.0. In addition, the average median lesion-wise DSC was 0.51 and 0.60 for all the lesions and lesions with SUVmax>5.0, respectively, on the testing set. Four additional neural networks with different architectures were trained, and they both yielded stronger performance of segmenting lesions whose SUVmax>5.0 compared to the rest of lesions. Our results demonstrate that prostate cancer metastases in PSMA PET/CT images can be detected and segmented using CNNs. The segmentation performance strongly depends on the intensity, size, and the location of lesions, and can be improved by using specialized loss functions. Specifically, the models performed best in detection of lesions with SUVmax>5.0. Another challenge was to accurately segment lesions close to the bladder. Future work will focus on improving the detection of lesions with lower SUV values by designing custom loss functions that take into account the lesion intensity, using additional data augmentation techniques, and reducing the number of false lesions by developing methods to better separate signal from noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐人杰发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
sxt发布了新的文献求助10
6秒前
L2r完成签到,获得积分20
6秒前
九个太阳完成签到,获得积分10
7秒前
7秒前
修语发布了新的文献求助10
8秒前
爆米花应助liu采纳,获得10
8秒前
孙雪松完成签到 ,获得积分10
10秒前
xyqnb发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
莓莓MM完成签到,获得积分10
16秒前
superx发布了新的文献求助10
16秒前
脑洞疼应助彼岸@采纳,获得10
17秒前
19秒前
微笑奇迹发布了新的文献求助10
20秒前
21秒前
曹二完成签到,获得积分20
22秒前
寻路完成签到,获得积分10
23秒前
joasuka发布了新的文献求助10
23秒前
24秒前
pkuwalker发布了新的文献求助10
24秒前
Rita发布了新的文献求助10
24秒前
博一完成签到,获得积分10
26秒前
27秒前
27秒前
风花雪月发布了新的文献求助10
27秒前
dragonking520完成签到 ,获得积分10
28秒前
彼岸@发布了新的文献求助10
29秒前
30秒前
CodeCraft应助蜘蛛道理采纳,获得10
31秒前
全焱发布了新的文献求助10
32秒前
留胡子的火完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955943
求助须知:如何正确求助?哪些是违规求助? 3502134
关于积分的说明 11106024
捐赠科研通 3232512
什么是DOI,文献DOI怎么找? 1786999
邀请新用户注册赠送积分活动 870307
科研通“疑难数据库(出版商)”最低求助积分说明 801960