AI-Assisted QT Measurements for Highly Automated Drug Safety Studies

QT间期 人工智能 深度学习 卷积神经网络 机器学习 计算机科学 可解释性 尖端扭转 模式识别(心理学) 医学 内科学
作者
Mously Dior Diaw,Stéphane Papelier,Alexandre Durand-Salmon,Jacques Felblinger,Julien Oster
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 1504-1515 被引量:17
标识
DOI:10.1109/tbme.2022.3221339
摘要

Rate-corrected QT interval (QTc) prolongation has been suggested as a biomarker for the risk of drug-induced torsades de pointes, and is therefore monitored during clinical trials for the assessment of drug safety. Manual QT measurements by expert ECG analysts are expensive, laborious and prone to errors. Wavelet-based delineators and other automatic methods do not generalize well to different T wave morphologies and may require laborious tuning. Our study investigates the robustness of convolutional neural networks (CNNs) for QT measurement. We trained 3 CNN-based deep learning models on a private ECG database with human expert-annotated QT intervals. Among these models, we propose a U-Net model, which is widely used for segmentation tasks, to build a novel clinically useful QT estimator that includes QT delineation for better interpretability. We tested the 3 models on four external databases, amongst which a clinical trial investigating four drugs. Our results show that the deep learning models are in stronger agreement with the experts than the state-of-the-art wavelet-based algorithm. Indeed, the deep learning models yielded up to 71% of accurate QT measurements (absolute difference between manual and automatic QT below 15 ms) whereas the wavelet-based algorithm only allowed 52% of QT accuracy. For the 2 studies of drugs with small to no QT prolonging effect, a mean absolute difference of 6 ms (std = 5 ms) was obtained between the manual and deep learning methods. For the other 2 drugs with more significant effect on the volunteers, a mean difference of up to 17 ms (std = 17 ms) was obtained. The proposed models are therefore promising for automated QT measurements during clinical trials. They can analyze various ECG morphologies from a diversity of individuals although some QT-prolonged ECGs can be challenging. The U-Net model is particularly interesting for our application as it facilitates expert review of automatic QT intervals, which is still required by regulatory bodies, by providing QRS onset and T offset positions that are consistent with the estimated QT intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助光合谷采纳,获得10
刚刚
英姑应助小宝宝采纳,获得10
1秒前
1秒前
dll关闭了dll文献求助
2秒前
甜乎贝贝完成签到 ,获得积分10
4秒前
默默新波完成签到 ,获得积分10
6秒前
momo发布了新的文献求助10
6秒前
子车半邪完成签到,获得积分10
7秒前
英俊青旋完成签到 ,获得积分10
7秒前
留的白完成签到,获得积分10
7秒前
9秒前
zxin完成签到 ,获得积分10
9秒前
寒风完成签到,获得积分10
9秒前
9秒前
yu关闭了yu文献求助
10秒前
英姑应助花椒小透明采纳,获得10
10秒前
子车半邪发布了新的文献求助10
11秒前
慕青应助GPY采纳,获得10
11秒前
12秒前
理论家发布了新的文献求助10
13秒前
15秒前
乌鱼子发布了新的文献求助20
15秒前
隐形以晴发布了新的文献求助10
16秒前
16秒前
科研通AI6应助LLN采纳,获得10
17秒前
初一发布了新的文献求助30
19秒前
嘉欣完成签到 ,获得积分10
20秒前
无私航空发布了新的文献求助10
21秒前
大大大大管子完成签到 ,获得积分10
21秒前
风清扬应助JING采纳,获得30
22秒前
24秒前
24秒前
搜集达人应助check采纳,获得10
25秒前
25秒前
852应助孤独卿采纳,获得10
25秒前
26秒前
26秒前
小二郎应助485613采纳,获得10
26秒前
28秒前
英俊的铭应助22采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626037
求助须知:如何正确求助?哪些是违规求助? 4711790
关于积分的说明 14956974
捐赠科研通 4780061
什么是DOI,文献DOI怎么找? 2554016
邀请新用户注册赠送积分活动 1515892
关于科研通互助平台的介绍 1476120