清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Overlay Accelerator of DeepLab CNN for Spacecraft Image Segmentation on FPGA

计算机科学 覆盖 航天器 物理 天文 程序设计语言
作者
Zibo Guo,Kai Liu,Wei Liu,Xiaoyao Sun,Chongyang Ding,Shangrong Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (5): 894-894 被引量:6
标识
DOI:10.3390/rs16050894
摘要

Due to the absence of communication and coordination with external spacecraft, non-cooperative spacecraft present challenges for the servicing spacecraft in acquiring information about their pose and location. The accurate segmentation of non-cooperative spacecraft components in images is a crucial step in autonomously sensing the pose of non-cooperative spacecraft. This paper presents a novel overlay accelerator of DeepLab Convolutional Neural Networks (CNNs) for spacecraft image segmentation on a FPGA. First, several software–hardware co-design aspects are investigated: (1) A CNNs-domain COD instruction set (Control, Operation, Data Transfer) is presented based on a Load–Store architecture to enable the implementation of accelerator overlays. (2) An RTL-based prototype accelerator is developed for the COD instruction set. The accelerator incorporates dedicated units for instruction decoding and dispatch, scheduling, memory management, and operation execution. (3) A compiler is designed that leverages tiling and operation fusion techniques to optimize the execution of CNNs, generating binary instructions for the optimized operations. Our accelerator is implemented on a Xilinx Virtex-7 XC7VX690T FPGA at 200 MHz. Experiments demonstrate that with INT16 quantization our accelerator achieves an accuracy (mIoU) of 77.84%, experiencing only a 0.2% degradation compared to that of the original fully precision model, in accelerating the segmentation model of DeepLabv3+ ResNet18 on the spacecraft component images (SCIs) dataset. The accelerator boasts a performance of 184.19 GOPS/s and a computational efficiency (Runtime Throughput/Theoretical Roof Throughput) of 88.72%. Compared to previous work, our accelerator improves performance by 1.5× and computational efficiency by 43.93%, all while consuming similar hardware resources. Additionally, in terms of instruction encoding, our instructions reduce the size by 1.5× to 49× when compiling the same model compared to previous work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助CF采纳,获得10
22秒前
su完成签到 ,获得积分0
24秒前
24秒前
msn00发布了新的文献求助10
31秒前
32秒前
可乐完成签到 ,获得积分10
33秒前
CF完成签到,获得积分10
33秒前
36秒前
量子星尘发布了新的文献求助10
38秒前
迅速的幻雪完成签到 ,获得积分10
40秒前
科研通AI2S应助hb采纳,获得10
40秒前
呆萌冰彤完成签到 ,获得积分10
40秒前
CF发布了新的文献求助10
41秒前
荣浩宇完成签到 ,获得积分10
49秒前
51秒前
滕皓轩完成签到 ,获得积分10
54秒前
orixero应助帅气绮露采纳,获得10
54秒前
sweet雪儿妞妞完成签到 ,获得积分10
58秒前
wwrz发布了新的文献求助10
59秒前
1分钟前
帅气绮露发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助孤独的送终采纳,获得10
1分钟前
圆圆完成签到 ,获得积分10
1分钟前
红火完成签到 ,获得积分10
1分钟前
完美世界应助晚星采纳,获得10
1分钟前
怡然之玉完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
笑傲完成签到,获得积分10
1分钟前
zmm发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
文献搬运工完成签到 ,获得积分0
1分钟前
打打应助tata采纳,获得10
1分钟前
1分钟前
枯叶蝶完成签到 ,获得积分10
1分钟前
夏夏发布了新的文献求助10
1分钟前
虫子发布了新的文献求助10
1分钟前
helen李完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5781070
求助须知:如何正确求助?哪些是违规求助? 5661797
关于积分的说明 15453769
捐赠科研通 4911371
什么是DOI,文献DOI怎么找? 2643529
邀请新用户注册赠送积分活动 1591188
关于科研通互助平台的介绍 1545777