Generalizable synthetic MRI with physics‐informed convolutional networks

概化理论 基本事实 人工智能 磁共振成像 图像质量 神经影像学 模式识别(心理学) 深度学习 计算机科学 对比度(视觉) 核医学 物理 数学 图像(数学) 放射科 统计 医学 精神科
作者
Luuk Jacobs,Stefano Mandija,Hongyan Liu,Cornelis A. T. van den Berg,Alessandro Sbrizzi,Matteo Maspero
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3348-3359 被引量:2
标识
DOI:10.1002/mp.16884
摘要

Abstract Background Magnetic resonance imaging (MRI) provides state‐of‐the‐art image quality for neuroimaging, consisting of multiple separately acquired contrasts. Synthetic MRI aims to accelerate examinations by synthesizing any desirable contrast from a single acquisition. Purpose We developed a physics‐informed deep learning‐based method to synthesize multiple brain MRI contrasts from a single 5‐min acquisition and investigate its ability to generalize to arbitrary contrasts. Methods A dataset of 55 subjects acquired with a clinical MRI protocol and a 5‐min transient‐state sequence was used. The model, based on a generative adversarial network, maps data acquired from the five‐minute scan to “effective” quantitative parameter maps (q*‐maps), feeding the generated PD, T 1 , and T 2 maps into a signal model to synthesize four clinical contrasts (proton density‐weighted, T 1 ‐weighted, T 2 ‐weighted, and T 2 ‐weighted fluid‐attenuated inversion recovery), from which losses are computed. The synthetic contrasts are compared to an end‐to‐end deep learning‐based method proposed by literature. The generalizability of the proposed method is investigated for five volunteers by synthesizing three contrasts unseen during training and comparing these to ground truth acquisitions via qualitative assessment and contrast‐to‐noise ratio (CNR) assessment. Results The physics‐informed method matched the quality of the end‐to‐end method for the four standard contrasts, with structural similarity metrics above (std), peak signal‐to‐noise ratios above , representing a portion of compact lesions comparable to standard MRI. Additionally, the physics‐informed method enabled contrast adjustment, and similar signal contrast and comparable CNRs to the ground truth acquisitions for three sequences unseen during model training. Conclusions The study demonstrated the feasibility of physics‐informed, deep learning‐based synthetic MRI to generate high‐quality contrasts and generalize to contrasts beyond the training data. This technology has the potential to accelerate neuroimaging protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秋半雪发布了新的文献求助10
1秒前
您不疼发布了新的文献求助10
1秒前
xinghy应助放飞的羊驼采纳,获得10
2秒前
梦_筱彩完成签到 ,获得积分10
2秒前
3秒前
胡闹闹发布了新的文献求助10
3秒前
3秒前
3秒前
陈坤完成签到,获得积分10
4秒前
zxb关闭了zxb文献求助
4秒前
CipherSage应助安安采纳,获得10
4秒前
情怀应助大帅哥采纳,获得10
5秒前
我爱睡懒觉完成签到,获得积分10
5秒前
5秒前
无花果应助betty采纳,获得10
5秒前
传奇3应助璀璨采纳,获得10
6秒前
营养牛发布了新的文献求助10
6秒前
烟花应助xW采纳,获得10
6秒前
大板栗发布了新的文献求助10
7秒前
zchyx发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
咖啡续命发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
orixero应助一包辣条采纳,获得10
13秒前
13秒前
14秒前
9999完成签到,获得积分10
14秒前
Sene发布了新的文献求助10
14秒前
研友_85YJY8发布了新的文献求助10
14秒前
BigBoss完成签到,获得积分10
14秒前
小马甲应助安寒采纳,获得10
16秒前
16秒前
tiantale完成签到 ,获得积分10
16秒前
hbj完成签到,获得积分10
17秒前
李健的粉丝团团长应助dada采纳,获得10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110698
求助须知:如何正确求助?哪些是违规求助? 3649106
关于积分的说明 11557960
捐赠科研通 3354352
什么是DOI,文献DOI怎么找? 1842873
邀请新用户注册赠送积分活动 909091
科研通“疑难数据库(出版商)”最低求助积分说明 825936