A fault diagnosis method for motor vibration signals incorporating Swin transformer with locally sensitive hash attention

计算机科学 Softmax函数 平滑的 散列函数 小波 变压器 振动 模式识别(心理学) 人工智能 人工神经网络 工程类 声学 计算机视觉 计算机安全 电压 电气工程 物理
作者
Fei Zeng,Xiaotong Ren,Qing Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 046121-046121 被引量:11
标识
DOI:10.1088/1361-6501/ad1cc4
摘要

Abstract Identification of motor vibration signals is one of the important tasks in motor fault diagnosis and predictive maintenance, and wavelet time–frequency diagram is a commonly used signal analysis method to extract the frequency and time characteristics of signals. In this paper, a method based on local sensitive hashing (LSH)-Swin transformer network is proposed for identifying the wavelet time–frequency diagrams of motor vibration signals to analyze the fault types. The traditional Swin transformer model converges slowly due to the smoothing of the attention distribution when dealing with data with sparse features, while the method proposed in this paper reduces the smoothing of the computed attention and enables the network to learn the key features better by introducing locally-sensitive hash attention in the network model, dividing the sequences in the input attention into multiple hash buckets, calculating the attention weights of only some of the vectors with a high degree of hash similarity, and by sampling discrete samples with the use of the Gumbel Softmax. The experimental results show that the method proposed in this paper has better recognition accuracy and higher computational efficiency compared with the traditional network when processing wavelet time–frequency maps of motor vibration signals, and its validation accuracy reaches 99.7%, the number of parameters also has a decrease of about 13%, and the training network to reach converged epochs is also faster. The method in this paper can provide an effective solution for the analysis and processing of motor vibration signals, and has certain application value in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潇洒诗云完成签到,获得积分10
刚刚
yuanshl1985发布了新的文献求助10
刚刚
Hello应助Waris采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
dd123发布了新的文献求助10
1秒前
霜序完成签到 ,获得积分10
1秒前
古柳完成签到,获得积分10
5秒前
ii发布了新的文献求助20
6秒前
7秒前
YF是杨芳完成签到 ,获得积分10
7秒前
所所应助鱼鱼采纳,获得10
7秒前
7秒前
8秒前
8秒前
flyfish完成签到,获得积分10
8秒前
8秒前
缥缈孤鸿影完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助清脆的又蓝采纳,获得10
10秒前
旨酒欣欣应助satchzhao采纳,获得10
10秒前
11秒前
clownnn发布了新的文献求助10
11秒前
12秒前
liuliu应助车访枫采纳,获得10
12秒前
12秒前
今后应助虚心的乌冬面采纳,获得10
12秒前
21_xxrr发布了新的文献求助30
12秒前
河漫发布了新的文献求助30
13秒前
南城完成签到 ,获得积分10
14秒前
文献狗发布了新的文献求助30
14秒前
14秒前
15秒前
XQQDD发布了新的文献求助10
16秒前
迷糊的七七完成签到,获得积分10
16秒前
香蕉觅云应助一棵树采纳,获得10
16秒前
24p0发布了新的文献求助10
17秒前
17秒前
zwcccccc完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
酷炫萃发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570