A machine learning model for predicting acute exacerbation of in-home chronic obstructive pulmonary disease patients

肺病 恶化 慢性阻塞性肺病 医学 慢性阻塞性肺疾病急性加重期 机器学习 接收机工作特性 人工智能 计算机科学 物理疗法 内科学
作者
Huiming Yin,Kun Wang,Ruyu Yang,Yanfang Tan,Qiang Li,Wei Zhu,Suzi Sung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108005-108005 被引量:10
标识
DOI:10.1016/j.cmpb.2023.108005
摘要

This study utilized intelligent devices to remotely monitor patients with chronic obstructive pulmonary disease (COPD), aiming to construct and evaluate machine learning (ML) models that predict the probability of acute exacerbations of COPD (AECOPD). Patients diagnosed with COPD Group C/D at our hospital between March 2019 and June 2021 were enrolled in this study. The diagnosis of COPD Group C/D and AECOPD was based on the GOLD 2018 guidelines. We developed a series of machine learning (ML)-based models, including XGBoost, LightGBM, and CatBoost, to predict AECOPD events. These models utilized data collected from portable spirometers and electronic stethoscopes within a five-day time window. The area under the ROC curve (AUC) was used to assess the effectiveness of the models. A total of 66 patients were enrolled in COPD groups C/D, with 32 in group C and 34 in group D. Using observational data within a five-day time window, the ML models effectively predict AECOPD events, achieving high AUC scores. Among these models, the CatBoost model exhibited superior performance, boasting the highest AUC score (0.9721, 95 % CI: 0.9623–0.9810). Notably, the boosting tree methods significantly outperformed the time-series based methods, thanks to our feature engineering efforts. A post-hoc analysis of the CatBoost model reveals that features extracted from the electronic stethoscope (e.g., max/min vibration energy) hold more importance than those from the portable spirometer. The tree-based boosting models prove to be effective in predicting AECOPD events in our study. Consequently, these models have the potential to enhance remote monitoring, enable early risk assessment, and inform treatment decisions for homebound patients with chronic COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇1994完成签到,获得积分10
刚刚
1秒前
小马甲应助耍酷延恶采纳,获得10
2秒前
akiyy完成签到,获得积分10
3秒前
ZSS_ism发布了新的文献求助10
3秒前
3秒前
qianchen完成签到,获得积分10
4秒前
我就是柠檬精完成签到,获得积分20
5秒前
8秒前
8秒前
8秒前
8秒前
孔子涵完成签到,获得积分10
8秒前
mildJYY完成签到,获得积分10
9秒前
10秒前
10秒前
song_song完成签到,获得积分10
10秒前
李健的小迷弟应助annie2D采纳,获得150
13秒前
mhnbdfsjh发布了新的文献求助10
13秒前
浮游应助默默咖啡豆采纳,获得10
13秒前
自由能完成签到,获得积分10
14秒前
小小发布了新的文献求助10
15秒前
15秒前
学不会物理的男孩完成签到,获得积分10
17秒前
18秒前
HUOZHUANGCHAO完成签到,获得积分10
18秒前
耙芋儿发布了新的文献求助10
20秒前
自由的青槐完成签到 ,获得积分10
21秒前
22秒前
hhhx发布了新的文献求助10
22秒前
22秒前
23秒前
小蘑菇应助嘎嘎采纳,获得10
26秒前
annie2D发布了新的文献求助150
26秒前
shuangcheng完成签到,获得积分10
27秒前
29秒前
醉熏的小蜜蜂完成签到 ,获得积分10
30秒前
Anthony完成签到 ,获得积分10
31秒前
31秒前
31秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381160
求助须知:如何正确求助?哪些是违规求助? 4504646
关于积分的说明 14018876
捐赠科研通 4413797
什么是DOI,文献DOI怎么找? 2424443
邀请新用户注册赠送积分活动 1417437
关于科研通互助平台的介绍 1395174