Papillary Thyroid Cancer Histopathological Image Classification Using Pretrained ConvNeXt Tiny and Grad-CAM Interpretation

人工智能 口译(哲学) 甲状腺乳突癌 甲状腺癌 计算机科学 医学 癌症 病理 模式识别(心理学) 内科学 程序设计语言
作者
Nabila Husna Shabrina,Dadang Gunawan,Maria Fransisca Ham,Agnes Stephanie Harahap
标识
DOI:10.1109/itaic58329.2023.10409019
摘要

The use of histopathological images for the diagnosis of all types of cancer, including thyroid cancer, is considered the gold standard in clinical practice. Even so, the process of manually diagnosing histopathological images remains a challenge because this diagnosis process takes a long time and has problems in terms of inconsistencies and disagreements between experts. The development of computer-aided technology utilizing deep learning has enabled the implementation of a system for identifying and classifying thyroid cancers based on histopathological images. Despite several studies having been carried out on thyroid cancer classification using deep learning, limited model architectures have been evaluated. Moreover, model interpretability, which is critical for its clinical acceptance, remains underexplored. to expand current research on Papillary Thyroid Cancer (PTC) classification, this study implemented ConvNeXt Tiny, a new generation of convolutional networks, to classify PTC-like and non-PTC-like histopathological images. The Grad-CAM technique was used to address the lack of interpretability in previous research. The current study contributes to the field of PTC histopathological image analysis by combining a CNN-based model and Grad-CAM for both classification and interpretation purposes. Given the absence of advanced preprocessing, the accuracy achieved was approximately 84.36%. This suggests that the implemented model has potential for further development into a more robust version. Visualization and interpretation of the model results were performed using Grad-CAM in the form of a class-activation map.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhilianghui0807完成签到 ,获得积分10
4秒前
Estella完成签到 ,获得积分10
6秒前
欣慰冬亦完成签到 ,获得积分10
7秒前
swordshine完成签到,获得积分10
9秒前
10秒前
GreenDuane完成签到 ,获得积分0
13秒前
小莫完成签到 ,获得积分10
13秒前
Always完成签到 ,获得积分10
15秒前
修好世界完成签到,获得积分10
23秒前
Bismarck发布了新的文献求助10
26秒前
26秒前
现代大神完成签到,获得积分10
28秒前
29秒前
冰凌心恋完成签到,获得积分10
31秒前
j7337完成签到,获得积分10
32秒前
123完成签到 ,获得积分10
34秒前
在九月完成签到 ,获得积分10
35秒前
小喵完成签到 ,获得积分10
42秒前
mark33442完成签到,获得积分10
44秒前
胜胜糖完成签到 ,获得积分10
45秒前
47秒前
复杂的可乐完成签到 ,获得积分10
49秒前
Jerry完成签到,获得积分10
51秒前
Bismarck发布了新的文献求助10
1分钟前
April完成签到 ,获得积分10
1分钟前
1分钟前
LT完成签到 ,获得积分0
1分钟前
Kelsey完成签到 ,获得积分10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
你才是小哭包完成签到 ,获得积分10
1分钟前
可玩性完成签到 ,获得积分10
1分钟前
慎之完成签到 ,获得积分10
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
天天快乐应助Bismarck采纳,获得10
1分钟前
KrisTina完成签到 ,获得积分10
1分钟前
1分钟前
科研小牛完成签到 ,获得积分10
1分钟前
科研通AI5应助djbj2022采纳,获得80
1分钟前
小芳芳完成签到 ,获得积分10
1分钟前
苗条白枫完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511